Этапы переработки нефти. Фракционная перегонка нефти

Перегонка нефти


1. Варианты переработки

Выбор направления переработки нефти и ассортимента получаемых нефтепродуктов определяется физико-химическими свойствами нефти, уровнем технологии нефтеперерабатывающего завода и настоящей потребности хозяйств в товарных нефтепродуктах. Различают три основных варианта переработки нефти:

  • 1) топливный;
  • 2) горюче-смазочный;
  • 3) нефтехимический.

По топливном варианте нефть перерабатывается в основном на моторные и котельные топлива. Топливный вариант переработки отличается наименьшим числом технологических установок и низкими капиталовложениями. Различают глубокую и неглубокую топливную переработку. При глубокой переработке нефти стремятся получить максимально возможный выход высококачественных автомобильных бензинов, зимних и летних дизельных топлив и топлив для реактивных двигателей самолетов. Выход котельного топлива в этом варианте сводится к минимуму. Таким образом, предусматривается такой набор процессов вторичной переработки, при котором из тяжелых нефтяных фракций и остатка - гудрона получают высококачественные легкие моторные топлива. По этому варианту применяются каталитические процессы - каталитический крекинг, каталитический риформинг, гидрокрекинг и гидроочистки, а также термические процессы, например коксование. Переработка заводских газов в этом случае направлена ​​на увеличение выхода высококачественных бензинов. При неглубокой переработке нефти предусматривается высокий выход котельного топлива.

При топливно-масляном варианте переработки наряду с топливами получают масла. Для производства масел обычно подбирают нефти с высоким потенциальным содержанием масляных фракций. В этом случае для выработки высококачественных масел требуется минимальное количество технологических установок. Масляные фракции (фракции, выкипающие выше 350 ? С), выделенные из нефти, сначала подвергаются очистке избирательными (селективными) растворителями: фенолом или фурфуролом, чтобы удалить часть смолистых веществ и низькоиндексни углеводороды, затем проводят депарафинизацию с помощью смесей метилэтилкетона или ацетона с толуолом для снижения температуры застывания масла. Заканчивается обработка масляных фракций доочисткой отбеливающими глинами. В последних технологиях для получения масел используют процессы гидроочистки взамен селективной очистки и обработки отбеливающими глинами. Таким образом получают дистиллятные масла (легкие и средние индустриальные, автотракторные и др.).. Остаточные масла (авиационные, цилиндровые) выделяют из гудрона путем его деасфальтизации жидким пропаном. При этом образуются деасфальты и асфальт. Деасфальт подвергается дальнейшей обработке, а асфальт перерабатывают в битум или кокс .

Нефтехимический вариант переработки нефти по сравнению с предыдущими вариантами отличается большим ассортиментом нефтехимической продукции и в связи с этим наибольшим числом технологических установок и высокими капиталовложениями. Нефтеперерабатывающие заводы, строительство которых проводилось в последние десятилетия, направленные на нефтехимическую переработку. Нефтехимический вариант переработки нефти представляет собой сложное сочетание предприятий, на которых помимо выработки высококачественных моторных топлив и масел не только проводится подготовка сырья (олефинов, ароматических, нормальных и изопарафинив углеводородов и др.). Для тяжелого органического синтеза, но и осуществляются сложные физико-химические процессы, связанные с крупнотоннажных производством азотных удобрений, синтетического каучука, пластмасс, синтетических волокон, моющих веществ, жирных кислот, фенола, ацетона, спиртов, эфиров и многих других химикалий. В настоящее время из нефти получают тысячи продуктов. Основными группами являются жидкое топливо, газообразное топливо, твердое топливо (нефтяной кокс), смазочные и специальные масла, парафины и церезины, битумы, ароматические соединения, сажа, ацетилен, этилен, нефтяные кислоты и их соли, высшие спирты.


2. ПЕРЕГОНКА НЕФТИ ПЕРВИЧНАЯ

ПЕРЕГОНКА НЕФТИ ПЕРВИЧНАЯ, (рус. первичная перегонка нефти ; англ. primary oil refining ; нем. prim?re Erd?ldestillation f ) - Разделение нефти на фракции по температуре кипения при первичной переработке нефти для последующей переработки или использования в качестве товарной продукции. Осуществляется на атмосферных трубчатых и атмосферно-вакуумных трубчатых оборудования, часто комплектуются оборудованием обессоливания нефти и вторичной перегонки бензина .

Продукцией П.н.п. являются:

2) фракция 62-85 ? С - сырье для каталитического риформинга , на основе которой производят бензол ;

3) фракция 85-105 ? С - сырье установок каталитического риформинга, на основе которой производят толуол ;

4) фракция 105-140 ? С - сырье для каталитического риформинга, на основе которой производят ксилолы;

5) фракция 140-180 ? С - компонент товарного автобензина и керосина , сырье установок каталитически го риформинга и гидроочистки керосина.

Таблица - Типичные составы смесей, получаемых при деструктивной переработке нефтей (% масс.)

Компоненты Метод переработки
Пиролиз газойля Пиролиз дистиллятного фракции Газы крекинга
Термического Каталитического
Водород 9,1 9,9 3,5 11,7
Азот + оксид углерода - - - 15,3
Метан 21,9 24,3 36,8 12,2
Этилен 24,4 22,9 6,7 4,0
Этан 7,6 7,5 29,3 6,8
Пропилен 15,2 13,6 6,5 16,0
Пропан 1,0 1,4 10 8,3
Бутадиен 2,0 2,6 - -
Изобутилен 3,8 1,8 2,5 14,3
Бутилен-2 1,0 1,7 - -
Бутан 0,1 0,1 4,2 10,8
Пентан и выше 12,9 14,4 0,5 0,6

4. Продукты перегонки нефти. Параметры и режимы перегонки.

Чаще нефть перегоняют на следующие фракции: бензиновый , что выкипает до 170-200 о C; керосиновую , что выкипает при 175-270 о C; газойлевая , что выкипает при 270-350 ? С и остаток- мазут .

При перегонке нефти получают также газ прямой гонки, который представляет собой трудную часть попутных газов, оставшихся растворенными в нефти. Как правило, выход газа прямой перегонки невелик.

Применяют высокопроизводительные непрерывно действующие трубчатые перегонные установки, отличающиеся конструкцией печей, в которых происходит нагревание нефти, или конструкцией других аппаратов, входящих в состав установки.

В большинстве случаев трубчатая непрерывно действующая установка состоит из трубчатой ​​печи, насоса, качает нефть через трубчатую печь под давлением 1,0 МПа и более, колонны фракционирования, куда поступает перегретая нефть и где она разделяется на необходимые фракции, которые отбираются из колонны на разной высоте, конденсатора, водовидбирача и пароперегревателя, который служит для перегрева пара.

Перегонку нефти в промышленности производят на непрерывно действующих трубчатых установках. В их состав входит трубчатая печь, для конденсации и разделения паров сооружаются крупные ректификационные колонны, а для приема продуктов перегонки выстраиваются целые городки резервуаров.

Трубчатая печь представляет собой помещение, выложена внутри огнеупорным кирпичом. Внутри печи находится многократно изогнутый стальной трубопровод. Длина труб в печах достигает километра. Когда завод работает, по этим трубам непрерывно, с помощью насоса, подается нефть с большой скоростью - до двух метров в секунду. Печь обогревается мазутом, подаваемым в нее при помощи форсунок и сгорает в факеле. В трубопроводе нефть быстро нагревается до 350-370 ?. При такой температуре более летучие вещества нефти превращаются в пар.

Так как нефть - это смесь углеводородов различной молекулярной массы, имеющие разные температуры кипения, то перегонкой ее разделяют на отдельные нефтепродукты. При перегонке нефти получают светлые нефтепродукты: бензин (t кип 90-200 ? С), лигроин (t кип 150-230 ? С), керосин (t кип -300 ? С), легкий газойль - соляровое масло (t кип 230-350 ? С), тяжелый газойль (t кип 350-430 ? С), а в остатке - вязкую черную жидкость - мазут (t кип выше 430 ? С). Мазут подвергают дальнейшей переработке. Его перегоняют под уменьшенным давлением (чтобы предупредить разложение) и выделяют масла.

При перегонке с однократным испарением нефть нагревают в змеевике какого-либо нагревателя заранее заданной температуры. По мере повышения температуры образуется все больше пары, находится в равновесии с жидкой фазой, и при заданной температуре парожидкостных смесь оставляет подогреватель и поступает в адиабатический испаритель. Последний представляет собой пустотелый цилиндр, в котором паровая фаза отделяется от жидкой. Температура паровой и жидкой фаз в этом случае одинакова. Перегонка с многократным испарением включает два или более однократных процессы перегонки с повышением рабочей температуры на каждом этапе.

Точность разделения нефти на фракции при перегонке с однократным испарением меньше по сравнению с перегонкой с многократным и постепенным испарением. Но если высокой точности разделения фракций не требуется, то метод однократного испарения дешевле: при максимально допустимой температуре нагрева нефти 350-370 ? С (при более высокой температуре начинается разложение углеводородов) больше продуктов переходит в паровую фазу по сравнению с многократным или постепенным испарением. Для отбора из нефти фракций, выкипающие выше 350-370 ? С, применяют вакуум или водяной пар. Использование в промышленности принципа перегонки с однократным испарением в сочетании с ректификацией паровой и жидкой фаз позволяет достигать высокой четкости разделения нефти на фракции, непрерывности процесса и экономичного расхода топлива на нагрев сырья.

При первичной перегонке происходят только физические изменения нефти. От нее отгоняются легкие фракции, кипящие при низких температурах. Сами углеводороды остаются при этом неизменными. Выход бензина, в этом случае, составляет всего 10-15%. Такое количество бензина не может удовлетворить все возрастающий спрос на него со стороны авиации и автомобильного транспорта. При крекинге имеют место химические изменения нефти. Изменяется строение углеводородов. В аппаратах крекинг-заводов происходят сложные химические реакции. Выход бензина из нефти значительно увеличивается (до 65-70%) "путем расщепления углеводородов с длинной цепью, содержащихся, например, в мазуте, на углеводороды с относительно меньшей молекулярной массой. Такой процесс называется крекингом (от англ. Crack - расщеплять).

Крекинг изобрел русский инженер Шухов в 1891 г. В 1913 г. изобретение Шухова начали применять в Америке. Крекингом называется процесс расщепления углеводородов, в результате которого образуются углеводороды с меньшим числом атомов углерода в молекуле Процесс ведется при более высоких температурах (до 600 ? С) часто при повышенном давлении. При таких температурах крупные молекулы углеводородов "измельчаются" на меньшие.

Аппаратура крекинг-заводов в основном та же, что и для перегонки нефти. Это - печи, колонны. Но режим переработки другой. Сырье тоже другая - мазут.

Мазут - остаток первичной перегонки - густая и относительно тяжелая жидкость, его удельный вес близок к единице. Обусловлено это тем, что мазут состоит из сложных и крупных молекул углеводородов. Когда на крекинг-заводе мазут снова подвергается переработке, часть составляющих его углеводородов дробится на меньшие (т.е. с меньшей длиной молекул), из которых как раз и состоят легкие нефтяные продукты - бензин, керосин, лигроин.

Важным моментом является процесс сортировки и смешения нефти.

Различные нефти и выделенные из них соответствующие фракции отличаются физико-химическими и товарными свойствами. Так, бензиновые фракции некоторых нефтей характеризуются высокой концентрацией ароматических, нафтеновых или изопарафинов углеводородов и поэтому имеют высокие октановые числа, тогда как бензиновые фракции других нефтей содержат в значительных количествах парафиновые углеводороды и имеют очень низкие октановые числа. Важное значение в дальнейшей технологической переработке нефти имеет сирчистисть, маслянистость (мастильнисть), смолистость нефти и др.. Таким образом, существует необходимость отслеживания качественных характеристик нефти в процессе транспортировки, сбора и хранения с целью недопущения потери ценных свойств компонентов нефти. Однако раздельные сбор, хранение и перекачку нефти в пределах месторождения с большим числом нефтяных пластов существенно осложняет нефтепромысловое хозяйство и требует больших капиталовложений. Поэтому близкие по физико-химическим и товарным свойствам нефти на промыслах смешивают и направляют на совместную переработку.


4.1. Применение продуктов перегонки нефти

Наибольшее применение продукты переработки нефти находят в топливно-энергетической отрасли. Например, мазут обладает почти в полтора раза большей теплотой сгорания по сравнению с лучшим углем. Он занимает мало места при сгорании и не дает твердых остатков. Мазут применяется на ТЭС, заводах, на железнодорожном и водном транспорте дает огромную экономию средств, способствует быстрому развитию основных отраслей промышленности и транспорта.

Энергетическое направление в использовании нефти до сих пор остается главным во всем мире. Доля нефти в мировом энергобалансе составляет более 46%.

Однако в последние годы продукты переработки нефти все шире используются как сырье для химической промышленности. Около 8% нефти потребляется как сырье для современной химии. Например, этиловый спирт применяется примерно в 50 отраслях производства. В химической промышленности сажа идет на огнестойкие обкладки в печах. В пищевой промышленности применяются полиэтиленовые упаковки, пищевые кислоты, консервирующие средства, парафин, производятся белково-витаминные концентраты, исходным сырьем для которых служат метиловый и этиловый спирты и метан. В фармацевтической и парфюмерной промышленности из производных переработки нефти изготовляют нашатырный спирт , хлороформ , формалин , аспирин , вазелин и др.. Производные нафтосинтезу находят широкое применение и в деревообрабатывающей, текстильной, кожевенно-обувной и строительной промышленности.


Нефть разделяется на фракции для получения нефтепродуктов в два этапа, то есть перегонка нефти проходит через первичную и вторичную обработку.

Процесс первичной нефтепереработки

На этом этапе перегонки производится предварительное обезвоживание и обессоливание сырой нефти на специальном оборудовании для выделения солей и остальных примесей, которые могут вызывать коррозию аппаратуры и снижать качество продуктов нефтепереработки. После этого в нефти содержится всего 3-4 мг солей на литр и не более 0,1 % воды. Подготовленный продукт готов к перегонке.

По причине того, что жидкие углеводороды кипят при различной температуре, это свойство используется при перегонке нефти, чтобы выделить из нее отдельные фракции при разных фазах кипения. Перегонка нефти на первых нефтеперерабатывающих предприятиях давала возможность выделять следующие фракции в зависимости от температуры: бензин (выкипает при 180°С и ниже), реактивное топливо (выкипает при 180-240°С) и дизтопливо (выкипает при 240-350°С). От перегонки нефти остается мазут.

В процессе перегонки нефть разделяется по на фракции (составные части). В результате получаются товарные нефтепродукты или их компоненты. Перегонка нефти является начальным этапом ее переработки на специализированных заводах.

При нагревании образуется паровая фаза, состав которой отличен от жидкости. Получаемые перегонкой нефти фракции обычно являются не чистым продуктом, а смесью углеводородов. Отдельные углеводороды удается выделить только благодаря многократной перегонке нефтяных фракций.

Прямая перегонка нефти выполняется

Методом однократного испарения (так называемая, равновесная дистилляция) или простой перегонки (фракционная дистилляция);

С использованием ректификации и без нее;

С помощью испаряющего агента;

Под вакуумом и при атмосферном давлении.

Равновесная дистилляция менее четко разделяет нефть на фракции, чем простая перегонка. При этом в парообразное состояние при одинаковой температуре в первом случае переходит больше нефти, чем во втором.

Фракционная перегонка нефти дает возможность получить различное для дизельных и реактивных двигателей), а также сырье (бензол, ксилолы, этилбензол, этилен, бутадиен, пропилен), растворители и другие продукты.

Процесс вторичной нефтепереработки

Вторичная перегонка нефти проводится способом химического или термического каталитического расщепления тех продуктов, что выделены из нее в результате первичной нефтеперегонки. При этом получается большее количество бензиновых фракций, а также сырье для производства ароматических углеводородов (толуола, бензола и других). Самой распространенной технологией вторичной нефтепереработки нефти является крекинг.

Крекингом называют процесс высокотемпературной переработки нефти и выделенных фракций для получения (в основном) продуктов, у которых меньшая К ним можно отнести моторное топливо, масла для смазки и т. п., сырье для нефтехимической и химической промышленности. Протекание крекинга проходит с разрывом С—С связей и образованием карбанионов или свободных радикалов. Разрыв связей С—С выполняется одновременно с дегидрированием, изомеризацией, полимеризацией и конденсацией промежуточных и исходных веществ. Последние два процесса образуют крекинг-остаток, т.е. фракцию с температурой кипения выше 350°C и кокс.

Перегонка нефти методом крекинга была запатентована в 1891 году В. Г. Шуховым и С. Гавриловым, затем эти инженерные решения повторил У. Бартон при сооружении в США первой промышленной установки.

Крекинг проводится посредством нагревания сырья или воздействия катализаторов и высокой температуры.

Крекинг позволяет выделить из мазута больше полезных составляющих.

Владимир Хомутко

Время на чтение: 7 минут

А А

Как происходит первичная переработка нефти?

Нефть – это сложная смесь углеводородных соединений. Выглядит она как маслянистая вязкая жидкость с характерным запахом, цвет которой в основном варьируется от темно-коричневого до черного, хотя бывают и светлые, почти прозрачные нефти.

Эта жидкость обладает слабой флюоресценцией, её плотность меньше, чем у воды, в которой она почти не растворяется. Плотность нефти может иметь имеет значение от 0,65-0,70 грамм на кубический сантиметр (легкие сорта), а также 0,98-1,00 грамма на кубический сантиметр (тяжелые сорта).

Самый простой способ обезвоживания нефти на месторождении – термохимический способ удаления воды при нормальном атмосферном давлении.

Суть его заключается в том, что в подогретую до 30-ти – 50-ти градусов в нефть добавляют специальное поверхностно-активное вещество, называемое деэмульгатор, после чего полученная смесь отстаивается в специальных резервуарах. Если не обеспечить необходимую герметичность емкостей отстойников, то возникают серьезные потери сырья вследствие испарительных процессов. Поэтому в основном термохимический отстой происходит в герметичных резервуарах под давлением.

Если в нефти содержание солей невелико, то они практически полностью удаляются в процессе сепарации и отстаивания. Однако, большей части добываемых нефтей все-таки необходимо дополнительное обессоливание.

Для этого процесса также применимы термохимические методики, но в большинстве случаем применяется способ, называемый электрообессоливанием. Он сочетает в себе термохимический отстой с дополнительной обработкой нефтяной эмульсии, которая происходит в электрических полях. Установки, с помощью которых проводится этот процесс, называются электрообессоливающими (сокращенно – ЭЛОУ).

После обессоливания на ЭЛОУ смесь поступает в систему магистральных трубопроводов с целью её дальнейшей транспортировки на предприятия перерабатывающего комплекса (сокращенно – НПЗ).

Физические методы переработки нефти – прямая перегонка

Процессы прямой перегонки сырой нефти происходят на трубчатых установках двух типов – при значении атмосферного давления (установки АТ) и в вакууме различной глубины (ВТ). На отечественных НПЗ, как правило, оба типа объединяют в одну комбинированную установку АВТ – атмосферно-вакуумного трубчатого типа.

Название трубчатая объясняется тем, что сырье перед разделением его на фракции нагревается в змеевиках печей трубчатого типа.

АВТ имеет в своем составе два блока – атмосферный и вакуумный. Атмосферная перегонка нефти (или дистилляция) при естественном значении давления позволяет получать светлые , к которым относятся бензины, керосины и дизельные дистилляты.

Температура их выкипания – не выше 360-ти градусов Цельсия. Выход таких фракций, в зависимости от физико-химического состава перерабатываемого сырья, составляет от 45-ти до 60-ти процентов от общего количества сырой нефти. Остаток атмосферной перегонки называется мазутом.

Сам процесс переработки (разделение на фракции) предварительно нагретой нефти происходит в ректификационной колонне, которая выглядит как цилиндрический вертикальный агрегат, оборудованный изнутри специальными контактными устройствами, называемыми тарелками. Через эти тарелки выделяемые пары нефтепродуктов движутся вверх, а жидкие фазы опускаются вниз.

Ректификационные колонны могут быть разных размеров и различных конфигураций, однако их используют на всех предприятиях нефтепереработки. Количество тарелок в таких устройствах может колебаться от 20-ти до 60-ти штук.

В нижней части этой колонны предусмотрен подвод тепла, а в верхней – его отвод, поэтому температура в колонне постепенно понижается от нижней части к верхней. Это позволяет отводить бензиновые фракции в виде паров с верхней части аппарата. Керосиновые и дизельные дистилляты конденсируются и выводятся в других частях ректификационного колонного аппарата, а жидкий остаток в виде мазута откачивается с нижней части и поступает на вакуумный блок.

Задача вакуумной перегонки – отбор из мазута дистиллятов масляного типа (если НПЗ специализируется на производстве масел и смазок) либо широкой масляной фракции широкого спектра, которая называется вакуумный газойль (если специализация НПЗ – производство моторного топлива). После вакуумной перегонки образуется остаток, называемый гудроном.

Необходимость такой переработки мазута под вакуумом объясняется тем, что при значении температуры более 380-ти градусов начинается процесс крекинга (термического разложения углеводородов), а точка выкипания вакуумного газойля – это более 520-ти градусов. Из-за этого перегонку необходимо проводить при остаточном значении давления на уровне 40-60 миллиметров ртутного столба, что дает возможность уменьшить максимальне температурное значение в установке до 360-ти – 380-ти градусов.

Вакуумная среда в такой колонне создается с помощью специализированного оборудования, основным ключевым элементом которого являются либо жидкостные, либо паровые эжекторы.

Получаемая прямой перегонкой продукция

С помощью первичной перегонки нефтяного сырья получают следующие продукты:

  • углеводородный газ, который выводят посредством головки стабилизации; применяется в качестве бытового топлива и сырья для процессов газофракционирования;
  • бензиновые фракции (температура выкипания – до 180 градусов); используется в качестве сырья для процессов вторичной перегонки в установках каталитического риформинга и крекинга, пиролиза и других видов переработки нефти (точнее, её фракций), с целью получения товарных автомобильных бензинов;
  • керосиновые фракции (температура выкипания – от 120-ти до 315 градусов); после прохождения гидроочистки их применяют как реактивное и тракторное топливо;
  • атмосферный газойль (дизельные фракции), который выкипает в диапазоне от 180-ти до 350-ти градусов; после чего, пройдя соответствующую обработку и очистку, он применяется как топливо для дивгателей дизельного типа;
  • мазут, который выкипает при температурах свыше 350-ти градусов; используется как топливо для котельных и как сырьё для термических крекинговых установок;
  • вакуумный газойль с температурой выкипания от 350 до 500 градусов и более; является сырьём для каталитического и гидрокрекинга, а также для производства масляных нефтепродуктов;
  • гудрон – температура выкипания – более 500 градусов; который выступает сырьем для установок коксования и термического крекинга, с целью получения битумов и различных видов нефтяных масел.

Технологическая схема прямой перегонки (из учебника в редакции Глаголевой и Капустина)

Расшифруем обозначения:

  • К-1 – колонна отбензинивания;
  • К-2 – колонна атмосферной переработки нефти;
  • К-3 – колонна отпаривания;
  • К-4 – установка стабилизации;
  • К-5 – колонна вакуумной переработки;
  • Э-1…Э-4 – электрические дегидраторы;
  • П-1 и П-2 – подогревательные печи;
  • КХ-1…КХ-4 – устройства охлаждения и конденсирования;
  • Е-1 и Е-2 – рефлюксные емкости;
  • А-1 – вакуумный насос паро-эжекторного типа;
  • I – сырая нефть;
  • II – стабилизационная головка;
  • III – стабилизированный бензин;
  • IV – керосиновая фракция;
  • V – атмосферный газойль (дизельные фракции);
  • VI – вакуумный газойль;
  • VII – гудрон (остаток, образовавшийся после того, как была проведена вакуумная обработка);
  • VIII – выхлопные эжекторные газы;
  • IX – вещество ПАВ (деэмульгатор);
  • X – вода, сбрасываемая в канализационные стоки;
  • XI – водяной пар.

В колонне К-1 отбирается бензиновая фракция, которая затем конденсируется в ХК-1 и поступает в ёмкость Е-1.

Наполовину отбензиненная переработанная нефть с нижней части К-1 через печь трубчатого типа П-1 попадает в К-2 (атмосферная колонна). Часть потока такой нефти возвращается обратно в К-1, давая тепло, необходимое для ректификационных процессов.

В К-2 происходит дальнейшее фракционирование. Самая верхняя фракция К-2 – тяжелый бензин, который после конденсации поступает в Е-2. Керосин и дизельная фракция отводятся из К-2 с помощью боковых погон и попадают для отпаривания в К-3.

В К-3 происходит удаление легких фракций, после чего дизельный дистиллят и керосин через подогревательные теплообменники и холодильники выводят из установки.

Снизу К-2 отбирается жидкий мазут, затем он подается в печь П-2, а потом – в вакуумную колонну К-5, где его разделяют на гудрон и вакуумный газойль.

Сверху их К-5 с пароэжекторным насосом А-1 отсасывают водяной пар, воздух и образовавшиеся и газы, а также небольшое количество легких дизельных продуктов. Вакуумный газойль и гудрон пропускаются через подогреватели (теплообменники), а затем после конденсации в холодильниках они отводятся из установки.

Бензин из Е-1 и Е-2 подогревают и подают в колонну стабилизации К-4. Через верха К-4 (стабилизационную головку) отводятся сжиженные газы, а с нижней её части – стабилизированный жидкий бензин.

Так в общих чертах выглядит процесс первичной нефтеобработки.

Нет соответствующих видео

Тема 9 «ОСНОВЫ ТЕХНОЛОГИИ ПЕРЕРАБОТКИ НЕФТИ И НЕФТЕПРОДУКТОВ»

1. Происхождение и состав нефти. Добыча и подготовка нефти к переработке.

3. Основы технологии производства и переработки полимерных материалов.

4. Основы технологии производства резинотехнических изделий.

Происхождение и состав нефти. Добыча и подготовка нефти к переработке

Из всех известных видов топлива наибольшее значение имеет органическое топливо, сжиганием которого получают тепловую энергию, а переработкой ‑ сырье для химической промышленности.

В настоящее время наиболее широко применяются продукты переработки нефти (нефтепродукты). Их производство осуществляется и в нашей стране, поэтому подробно рассмотрим технологии переработки нефти.

Нефть является жидким горючим ископаемым. Она залегает обычно на глубине 1,2 ‑2 км и более в пористых или трещиноватых горных породах (песках, песчаниках, известняках). Нефть представляет собой маслянистую жидкость от светло-коричневого до темно-бурого цвета со специфическим запахом, плотностью 0,65‑1,05 г/см 3 . По составу нефть представляет собой сложную смесь углеводородов, главным образом парафиновых и нафтеновых, в меньшей степени ‑ ароматических. Ее элементный состав (массовая доля, %): углерод (С) ‑ 82‑87, водород (Н) ‑ 11‑14, сера (S) ‑ ОД‑5,5.

В зависимости от получаемых из нефти продуктов существует три варианта ее переработки:

топливный , применяемый для получения моторного и котельного топлива;

топливно-масляный , которым вырабатывают топливо и смазочные масла;

нефтехимический (комплексный), продуктами которого являются не только топливо и масла, но и сырье для химической промышленности (олефины, ароматические и предельные углеводороды и др.).

Жидкое топливо, полученное из нефти, в зависимости от использования делят на:

карбюраторное (авиационные и автомобильные бензины) ‑ для двигателей внутреннего сгорания;

реактивное (керосин) ‑ для реактивных и газотурбинных двигателей;



Дизельное (газойль, соляровый дистиллят) ‑ для дизельных двигателей.

котельное (мазут) ‑ для топок паровых котлов, генераторных установок, металлургических печей. В общем случае переработка нефти на нефтепродукты включает ее добычу, подготовку и процессы первичной и вторичной переработки.

Добыча нефти осуществляется посредством бурения скважин.

Подготовка извлеченной из недр нефти заключается в удалении из нее примесей (попутного газа, пластовой воды с минеральными солями, механических включений) и стабилизации по составу. Эти операции проводят как непосредственно на нефтяных промыслах, так и на нефтеперерабатывающих заводах.

Первичная переработка нефти , осуществляемая физическими методами (главным образом прямой перегонкой), состоит в разделении ее на отдельные фракции (дистилляты), каждая из которых является смесью углеводородов.

Вторичная нефтепереработка представляет собой разнообразные процессы переработки нефтепродуктов, полученных в результате первичной переработки. Эти процессы сопровождаются деструктивными превращениями содержащихся в нефтепродуктах углеводородов и являются по своей сути химическими процессами.

Прямая перегонка нефти. Крекинг нефтепродуктов

Процесс прямой перегонки основан на явлениях испарения и конденсации смеси веществ с различными температурами кипения.

Кипение смеси начинается при температуре, равной средней температуры кипения составных частей. При этом в парообразную фазу переходят преимущественно легкие низкокипящие компоненты (имеющие меньшую плотность и кипящие при более низких температурах), а в жидкой фазе остаются высококипящие (имеющие большую плотность и кипящие при более высоких температурах). Если образовавшуюся парообразную фазу отвести и охладить, из нее конденсируется жидкая. В нее перейдут главным образом высококипящие (тяжелые) компоненты, а в парообразной фазе останутся легкие.

Таким образом, из исходной смеси получают три фракции. Одна из них, оставшаяся жидкой при кипении, содержит преимущественно высококипящие компоненты; вторая, сконденсировавшаяся, имеет состав, близкий к составу исходной смеси; третья, парообразная, содержит в основном низкокипящие компоненты.

За счет однократных (перегонка) либо многократных (ректификация) процессов кипения и конденсации полученных фракций можно добиться достаточно полного разделения низко- и высококипящих компонентов.

Технологический процесс прямой перегонки нефти состоит из четырех основных операций: нагрева смеси, испарения, конденсации и охлаждения полученных фракций.

В зависимости от глубины переработки нефти установки перегонки подразделяются на два вида:

Одноступенчатые, работающие при атмосферном давлении (AT);

Двухступенчатые (атмосферно-вакуумные) (АВТ), в которых первая ступень, как правило, работает при атмосферном давлении, а другая ‑ при давлении ниже атмосферного (5‑8 кПа)-

При двухступенчатой перегонке нефть предварительно обессоливают и обезвоживают, затем нагревают в трубчатой печи первой ступени до температуры 300 ‑ 350 ° С (на 25 ‑ 30 ° С выше температуры кипения). Разделение нефти на фракции производят в ректификационной колонне, которая представляет собой цилиндрический аппарат высотой 25 ‑ 55 м и диаметром 5 ‑ 7 м. Предварительно нагретую нефть подают в нижнюю часть колонны- Здесь нефть закипает и разделяется на две фазы: парообразную и жидкую. Жидкие продукты стекают вниз, а пары поднимаются вверх по колонне. В верхнюю часть колонны подается орошающая жидкость (флегма). Поднимающиеся снизу пары многократно контактируют по высоте колонны со стекающей жидкой фазой. Встречаясь с поднимающимися горячими парами, орошающая колонну жидкость нагревается и частично испаряется. Пары, отдавая ей теплоту, конденсируются, и конденсат стекает в нижнюю часть колонны. По мере подъема паров их температура уменьшается, при этом стекающая вниз флегма все более обогащается тяжелыми фракциями, поднимающиеся пары ‑ легкими. Внизу колонны собирается жидкость, содержащая наиболее тяжелые фракции (мазут). Мазут сливается из нижней части колонны и охлаждается в теплообменниках, нагревая при этом подаваемую в колонну нефть.

Для поддержания процесса кипения в ректификационную колонну подается перегретый пар, который уносит с собой остатки легких фракций, не испарившихся ранее. Самая легкая бензиновая фракция при температуре 180 ‑ 200 ° С отводится из колонны в виде паров в конденсатор и отделяется от воды в сепараторе. Часть бензиновой фракции возвращается в колонну для орошения.

С промежуточных зон колонны отводятся так называемые средние фракции: керосиновая, кипящая при температуре 200 ‑ 300 °С, и газойлевая (температура кипения 300 ‑ 350 °С). Иногда отводят также другие фракции, например лигроин (160‑200 °С), керосиногазойлевую фракцию (270-320 °С).

Полученный после первоначальной перегонки мазут (его выход ‑ около 55 % исходной нефти) из первой ректификационной колонны перекачивается в трубчатую печь второй ступени, где нагревается до 400 ‑ 420 °С. Из печи мазут поступает во вторую ректификационную колонну, работающую при давлении ниже атмосферного (остаточное давление ‑ 5 ‑ 8 кПа). Из Нижней части этой колонны выводится гудрон, а по высоте отбираются масляные дистилляты.

Производительность двухступенчатых установок составляет 8 ‑ 9 тыс. т нефти в сутки. Выход бензина при прямой перегонке зависит от фракционного состава нефти и колеблется от 3 до 1 5 % .

Основы технологии крекинга нефтепродуктов. Сравнительно малый выход бензина (до 15 %)при прямой перегонке вызывает необходимость переработки других, менее ценных фракций, получаемых при прямой перегонке нефти и содержащих тяжелые молекулы углеводородов. Такая переработка называется крекингом.

Крекинг (англ, to creak ‑ раскалывать, расщеплять) – расщепление длинных молекул тяжелых углеводородов входящих в состав, например мазута, на более короткие легких молекулы легких низкокипящих продуктов.

Главными факторами, влияющими на протекание процесса крекинга, являются температура и продолжительность выдержки: чем выше температура и больше продолжительность выдержки, тем полнее идет процесс и больше выход продуктов крекинга. Большое влияние на ход и направление процесса крекинга оказывают катализаторы. При соответствующем подборе катализатора можно проводить реакцию при меньших температурах, обеспечивая получение необходимых продуктов и увеличение их выхода.

Исходя из вышеизложенного, различают две разновидности крекинга: термический и каталитический.

Термический крекинг ведут при повышенных температурах под высоким давлением (температура 450‑500 °С и давление 2‑7 МПа). Основной целью термического крекинга является получение светлого топлива из мазута или гудрона.

Термический крекинг осуществляется в трубчатых печах, в которых происходит расщепление тяжелых углеводородов.

Далее смесь продуктов крекинга и непрореагировавшего сырья проходит через испаритель, в котором отделяется креаток, т.е. вещества, не поддающиеся крекингу. Легкие продукты поступают в ректификационную колонну для разделения и получения легких товарных фракций. При термическом крекинге, например мазута, примерный состав продуктов следующий: крекинг-бензина ‑ 30‑35 %, крекинг-газов ‑ 10‑15, крекинг-остатка ‑ 50‑55 %. Крекинг-бензины применяются как компоненты автомобильных бензинов, крекинг-газы используются как топливо или сырье для синтеза органических соединений; крекинг-остаток, представляющий собой смесь смолистых, асфальтеноновых веществ, применяется как котельное топливо или сырье дяля производства битумов.

Термический крекинг может быть двух видов: низкотемпературный (висбрекинг) и высокотемпературный (пиролиз).

Низкотемпературный к р е к и н г осуществляется при температуре 440‑500 °С и давлении 1,9‑3 МПа, при этом длительность процесса составляет 90‑200 с. Он используется в основном для получения котельного топлива из мазута и гудрона.

Высокотемпературный крекинг протекает при температуре 530‑600 °С и давлении 0,12‑0,6 МПа и длится 0,5‑3 с. Его основное назначение ‑ получение бензина и этилена. В качестве побочных продуктов образуются пропилен, ароматические углеводороды и их производные.

Каталитический крекинг ‑ переработка нефтепродуктов в присутствии катализатора. В последнее время этот метод находит все большее применение для получения светлых нефтепродуктов, в том числе бензинов. К его достоинствам относят:

Высокую скорость процесса, в 500‑4000 раз превышающую скорость термического крекинга, и как следствие, ‑ более мягкие условия процесса и меньшие энергозатраты;

Увеличение выхода товарных продуктов, в том числе бензинов, характеризующихся высоким октановым числом и большей стабильностью при храпении;

Возможность ведения процесса в нужном направлении и получение продуктов определенного состава;

большой выход газообразных углеводородов, являющихся сырьем для органического синтеза;

использование сырья с высоким содержанием серы вследствие гидрирования сернистых соединений и выделения их в газовую фазу с последующей утилизацией.

В качестве катализаторов на установках каталитического крекинга используются синтетические алюмосиликаты.

Продукты каталитического крекинга из реактора поступают в ректификационную колонну, где разделяются на газы, бензин, легкий и тяжелый каталитические газойли. Непрореагировавшее сырье из нижней части колонны возвращается в реактор.

Примерный выход продуктов при каталитическом крекинге следующий: крекинг-бензин ‑ 35 ‑ 40 % ; крекинг-газ ‑ 15 % легкий крекинг-газойль ‑ 35 ‑ 40 % , тяжелый крекинг-газойль ‑ 5‑8 % .

Бензин каталитического крекинга характеризуется хорошими эксплуатационными свойствами. Газы каталитического крекинга выгодно отличаются высоким содержанием изобутана и бутилена, используемых в производстве синтетических каучуков.

Разновидностью каталитического крекинга является риформинг, ход реакций в котором направлен главным образом на образование ароматических углеводородов и изомеров. В зависимости от катализатора различают следующие разновидности риформинга:

Платформинг (катализатор на основе платины);

Рениформинг (катализатор на основе рения).

На практике наибольшее распространение получил платформинг, представляющий собой каталитический процесс переработки бензино-лигроиновых фракций прямой перегонки, осуществляемый в присутствии водорода. Если платформинг проводится при 480 ‑ 510 °С и давлении от 15- 10 5 до 3 10 6 Па, то в результате образуются бензол, толуол и ксилол. При давлении 5 10 6 Па получаются бензины, отличающиеся наивысшей стабильностью и малым содержанием серы.

Наряду с жидкими продуктами при всех способах каталитическогориформинга образуются газы, содержащие водород, метан, пропан и бутан. Газы риформинга используют как сырье для органического и неорганического синтеза: метанола (этилового спирта), аммиака и других соединений. Выход газов каталитического риформинга составляет 5‑15 % массы сырья. Завершающей стадией нефтепереработки является очистка нефтепродуктов , которая осуществляется химическими и физико-химическими способами. К химическим методам очистки нефтепродуктов относятся очистка серной кислотой и с помощью водорода (гидроочистка,) к физико-химическим ‑ адсорбционные и абсорбционные способы очистки.

Сернокислотная очистка заключается в том, что продукт смешивают с небольшим количеством 90‑93 % Н 2 SО 4 при обычной температуре. В результате химических реакций получаются очищенный продукт и отходы, которые можно использовать для производства серной кислоты.

Гидроочистка заключается во взаимодействии водорода с очищаемым продуктом в присутствии алюмокобальтмолибденовых катализаторов при температуре 380‑420 °С и давлении от 35 10 5 до 4 10 6 Па и удалении сероводорода, аммиака и воды.

При адсорбционном методе очистки нефтепродукты обрабатывают отбеливающими глинами или силикагелем. В этом случае адсорбируются сернистые, кислородосодержащие соединения, смолы и легкоминерализующиеся углеводороды.

Абсорбционные методы очистки заключаются в избирательном (селективном) растворении вредных компонентов нефтепродуктов. В качестве селективных растворителей как правило используются жидкая двуокись серы, фурфурол, нитробензол, дихлорэтиловый эфир и др.

После очистки нефтепродукты не всегда остаются стабильными. В этих случаях к ним добавляются в очень небольших количествах антиокислители (ингибиторы), резко замедляющие реакции окисления смолистых веществ, входящих в состав нефтепродуктов. В качестве ингибиторов применяют фенолы, ароматические амины и другие соединения. Переработка нефти характеризуется высоким уровнем затрат на сырье (50-75 % себестоимости продуктов нефтепереработки)электрическую и тепловую энергию, а также на основные фонды. Уровень затрат в нефтепереработке существенно зависят от состава нефти, предопределяющего глубину ее переработки, технологической схемы переработки, степени подготовки сырья к переработке и т.д. Так, при переработке высокосернистой нефти дополнительные капитальные и эксплуатационные затраты на ее перекачку и подготовку примерно в 1,5 выше, чем при переработке малосернистой нефти. В свою очередь высокопарафинистая вязкая нефть требует дополнительных затрат по ее депарафинизации, перекачке и хранению.

Фракции нефти определяются лабораторным путем, поскольку продукт содержит органические вещества, обладающие разным давлением насыщенных паров. О температуре кипения, как таковой, говорить нельзя, но вычисляется начальная точка и предел. Определенный интервальный промежуток кипения нефти +28-540°С. По нему определяется фракционный состав нефти. Он регламентирован стандартом ГОСТ 2177-99. За начало кипения принята температура, при которой появляется конденсат. Завершением кипения считается момент прекращения испарения паров. Лабораторные испытания проходят на перегонных аппаратах, где фиксируются устойчивые показания и выводится кривая температур кипения методом перегонки. Разделение нефти и нефтепродуктов на фракции до +200°С производится при атмосферном давлении. Остальные в более высоких температурах отбираются под вакуумом, чтобы не произошло разложения.

Методы определения фракционного состава нефтепродуктов

Фракционирование нефти необходимо, чтобы выбрать направления переработки сырьевой базы, узнать точное содержание базовых масел при перегонке нефти. На основании этого классифицируются все свойства фракций.

  • Метод A — использование автоматических аппаратов для определения фракционного состава нефти и отдельных псевдокомпонентов. Колбы используются из термостойкого стекла, дно и стенки которых одинаковой толщины.
  • Метод B – применение четырехгнездного, или шестигнездного аппарата. Колбы с круглым дном вместимостью 250 см3. Метод применяется только для разгонки темных нефтепродуктов.

Виды и свойства нефтяных фракций

Фракционный состав нефти определяется согласно российскому стандарту перегонки или ректификации, который соответствует разгонке Эглера. В основе разделение сложного состава углеводных газов на промежуточные элементы. На основе кипения высоких температур классифицируется 3 вида переработки нефти.

  • Простая перегонка - во время испарения пар конденсирует.
  • Дефлегмация - только высококипящие пары выделяют конденсат и возвращаются обратно в общую смесь в виде флегмы. Низкокипящие пары полностью испаряются.
  • Ректификация - процесс соединения двух предыдущих видов обработки, когда достигается максимальная концентрация и конденсирование низкокипящих паров.

В процессе определения фракционного состава нефти и нефтепродуктов, а также их свойств, происходит разделение на следующие виды фракций:

  • легкие (к этому типу относят бензиновую и петролейную) – выходят при температуре до 140°С при атмосферном давлении;
  • средние (сюда относятся: керосиновая, дизельная, лигроиновая) при атмосферном давлении в интервале температур 140-350°С;
  • при вакуумной переработке и температурах более 350°С получаются фракции, которые называют тяжелые (Вакуумный газойль, гудрон).

Фракции также делят на светлые (сюда относят легкие и средние) и темные или мазуты (это тяжелые фракции).

Фракции нефти таблица

А теперь подробнее об основных видах нефтяных фракций:

Петролейная фракция

Эфир или масло Шервуда - это бесцветная жидкость, которая состоит из пентана и гексана. Сразу испаряется при невысоких температурах. Является растворителем для создания экстрактов, топливо для зажигалок, горелок. Получается при температурах до + 100°С.

Бензиновая фракция

Бензиновая фракция нефти построена на сложной схеме углеродных соединений, которые выкипают при температуре + 140°С. Основное применение — используется для получения топлива к двигателям внутреннего сгорания и в качестве сырья в нефтехимии. В основе бензиновой фракции парафиновые вещества: метилциклопентан, циклогексан, метилциклогексан. Бензин содержит жидкие алканы в составе- природные, попутные, газообразные. Они подразделяются также на разветвленные и неразветвленные. Состав зависит от качественного соотношения компонентов сырья. Это говорит о том, что хороший бензин получается далеко не их всех сортов нефти. Ценность вида в том, что в процессе распада на соединения, образуются ароматические углеводороды, доля которых в сырьевой массе катастрофически мала.

Лигроиновая фракция

Подвид включает в себя тяжелые элементы. Насыщенность ароматическими углеводородами больше, чем у других соединений. Является компонентом для производства товарных бензинов, осветительных керосинов, реактивного топлива, органическим растворителем. Выступает как наполнитель бытовой техники. Химический состав: полициклические, циклические и ненасыщенные углеводороды. Отличается наличие серы, процент от общей массы которой зависит от месторождения, уровня залегания и качества сырьевого продукта.

Керосиновая фракция

Керосиновая фракция нефти — в первую очередь это топливо для реактивных двигателей. Используется в производстве лакокрасочной продукции и добавляется как растворитель в краску для стен и полов. Выступает сырьем в процессах синтеза веществ. Соединения углеводов с повышенным содержанием парафина. Наблюдается низкое содержание ароматических углеводов. Керосиновая фракция выделяется при атмосферной перегонке в пределах + 220°С.

Дизельная фракция

Подвид находит применение в изготовлении дизельного топлива для быстроходных видов транспорта, а также используется как вторичное сырье. В процессе обработки выделяется керосин, используемый для в лакокрасочной промышленности и приборостроении, изготовлении химии для автотранспорта. Преобладание смесей углеводородов нафтена. Для получения топлива, которые не застывает при -60°С, состав проходит карбамидную депарафинизацию. Это перемешивание всех компонентов в течение 1 часа и последующая фильтрация через воронку Бюхнера.

Мазут

Качественный состав смеси: масла смол, органические соединения с микроэлементами. Углеводородные компоненты: асфальтен, карбен, карбоид. При вакуумной перегонке из мазута производится гудрон, парафин, технические масла. Основное применение - жидкое топливо для котельных за характеристики вязкости. Топочный мазут подразделяется на 3 основных вида: флотский, средне-котельный и тяжелый. Последний применяется на ТЭЦ, средний вид - в котельных предприятий. Флотский - неотъемлемая часть работы судоходного транспорта.

Гудрон

Качество компонентов в процентном соотношении определяется так:

  • Парафин, нафтен - 95%.
  • Асфальтен - 3%.
  • Смолы - 2%.

Вакуумный гудрон получается в результате завершения всех процессов разделения и перегонки. Температура выкипания + 500°С. На выходе получается вязкая консистенция черного цвета. Жидкостный состав используется в дорожном строительстве. Из него производят битумы для кровельных материалов. Гудрон необходим для создания кокса - продукта стратегического назначения. Компонент используется в изготовлении котельного топлива. В нем сконцентрирован самый большой процент тяжелых металлов, содержащихся в нефти.

Сырьевые показатели нефтепродуктов зависят от глубины залегания и вида месторождения. Это учитывается при формировании фракций нефти и достижения процентного соотношения компонентов.