Как правильно составлять сложные блок схемы. Где нарисовать блок-схему онлайн

Разработка блок-схемы алгоритма решения задачи

Цель работы : изучение графического способа описания алгоритма решения задачи.

Задачи работы :

    ознакомиться с основными способами представления алгоритмов;

    освоить графический способ описания алгоритмов.

1.1. Порядок выполнения работы

    Изучите теоретические сведения по теме данного раздела (п. 1.2)

    Ознакомьтесь с постановкой задачи (п. 1.3). Вариант задания соответствует вашему номеру в списке группы.

    Разработайте блок-схему алгоритма решения поставленной задачи.

    Ответьте на контрольные вопросы.

    Подготовьте отчет о выполнении практической работы, который должен содержать:

    титульный лист;

    цель практической работы;

    постановку задачи;

    блок-схему алгоритма решения поставленной задачи;

    ответы на контрольные вопросы;

    выводы по практической работе.

1.2. Общие сведения

Одним из наиболее трудоемких этапов решения задачи на ЭВМ является разработка алгоритма.

Под алгоритмом понимается точное предписание, определяющее вычислительный процесс, ведущий от варьируемых начальных данных к искомому результату.

Основными характерными свойствами алгоритма являются:

    детерминированность (определенность) – при заданных исходных данных обеспечивается однозначность искомого результата;

    массовость – пригодность для задач данного типа при исходных данных, принадлежащих заданному подмножеству;

    результативность – реализуемый вычислительный процесс выполняется за конечное число этапов с выдачей осмысленного результата;

    дискретность – возможность разбиения алгоритма на отдельные этапы, выполнение которых не вызывает сомнений.

Выделяют следующие типы вычислительных процессов :

    Линейный вычислительный процесс.

Для получения результата необходимо выполнить некоторые операции в определенной последовательности.

    Разветвленный вычислительный процесс.

Конкретная последовательность операций зависит от значений одного или нескольких параметров. Например, если дискриминант квадратного уравнения не отрицателен, то уравнение имеет два корня, а если отрицателен, то действительных корней нет.

    Циклический вычислительный процесс

Для получения результата некоторую последовательность действий необходимо выполнить несколько раз. Например, для того, чтобы получить таблицу значений функции на заданном интервале изменения аргумента с заданным шагом, необходимо соответствующее количество раз определить следующее значение аргумента и посчитать для него значение функции.

В свою очередь, существуют также несколько типов циклического вычислительного процесса , а именно:

    Счетные циклы (циклы с заданным количеством повторений) – ­­ это циклические процессы, для которых количество повторений известно.

    Итерационные циклы – это циклические процессы, завершающиеся по достижении или нарушении некоторых условий.

    Поисковые циклы – это циклические процессы, из которых возможны два варианта выхода:

Выход по завершению процесса;

Досрочный выход по какому-либо дополнительному условию.

По типу вычислительного процесса, реализуемого алгоритмом, различают:

Алгоритмы линейной структуры;

Алгоритмы разветвленной структуры;

Алгоритмы циклической структуры.

Алгоритмы решения практических задач обычно имеют комбинированную структуру, то есть включают в себя все три типа вычислительных процессов.

К изобразительным средствам описания алгоритмов относятся следующие основные способы их представления:

Словесный (записи на естественном языке);

Структурно-стилизованный (записи на алгоритмическом языке и псевдокод);

Графический (изображение схем и графических символов);

Программный (тексты на языках программирования).

Словесный способ описания алгоритма представляет собой описание последовательных пронумерованных этапов обработки данных и задается в произвольном изложении на естественном языке.

Пример 1.1.

Алгоритм сложения двух чисел (a и b).

    Спросить, чему равно число a.

    Спросить, чему равно число b.

    Сложить a и b, результат присвоить с.

    Сообщить результат с.

Достоинством данного способа является простота описания, а к недостаткам можно отнести то, что такой подход многословен и не имеет строгой формализации, поэтому допускает неоднозначность толкования отдельных предписаний, в силу чего словесный способ представления алгоритма не имеет широкого распространения.

Для строгого задания различных структур данных и алгоритмов их обработки требуется иметь такую систему формальных обозначений и правил, чтобы смысл всякого используемого предписания трактовался точно и однозначно. Соответствующие системы правил называются языками описаний . К ним относятся алгоритмические языки (псевдокоды), блок-схемы и языки программирования.

Структурно-стилизованный способ описания алгоритма основан на записи алгоритмов в формализованном представлении предписаний, задаваемых путем использования ограниченного набора типовых синтаксических конструкций, называемых часто псевдокодами.

Достоинством псевдокодов является близость к языкам программирования, а недостатками, в свою очередь, являются сложность освоения и невозможность непосредственного ввода алгоритма для решения на ЭВМ, т.е. необходимость перевода на язык программирования.

Графический способ описания алгоритма предполагает, что для описания структуры алгоритма используется совокупность графических изображений (блоков), соединяемых линиями передачи управления. Такое изображение называется методом блок-схем .

Блок-схема алгоритма – это графическое представление хода решения задачи. Блок-схема состоит из блоков, соединенных линиями, а блоки изображаются в виде геометрических фигур, называемых символами. Внутри символов записываются указания о выполняемых блоком функциях – формулы, текст, логические выражения. Вид символов и правила выполнения блок-схем стандартизированы – ГОСТ 19.701-90 содержит перечень символов, их наименования, отображаемые функции, формы и размеры, а также правила выполнения схем. При разработке алгоритма каждое действие обозначают соответствующим блоком, показывая их последовательность линиями со стрелками на конце. Названия, обозначения и назначение элементов блок-схем приводится на рис. 1.1.

Рисунок 1.1 – Основные блоки

Следует упомянуть некоторые основные правила выполнения блок-схем, которыми надлежит руководствоваться при графическом описании алгоритмов. Начало алгоритмов отмечается символом "Терминатор", из которого выходит одна линия. В нем записывается слово "Пуск" ("Начало"). Конец алгоритма отмечается этим же символом, в котором записывается слово "Останов" ("Конец"). В этом случае данный символ не имеет ни одной выходной линии, а на него может замыкаться одна или более линий. Символ “Процесс” может иметь одну или несколько входных линий и только одну выходную. Внутри символа может быть записано несколько предписаний – в этом случае они выполняются в порядке записи. Представление отдельных операций достаточно свободно. Для обозначения вычислений можно использовать математические выражения, для пересылки данных – стрелки, для других действий – пояснения на естественном языке, например, А: = Х + 4; i: = i + 1, ––> B.

Линии потока должны быть параллельны сторонам листа. Основные направления линий потока – сверху вниз и слева направо – стрелкой не обозначаются. В других случаях на конце линии потока ставится стрелка, а в месте слияния линий ставится точка. Если блок-схема не умещается на одном листе, используют соединители. При переходе на другой лист или получении управления с другого листа в комментарии указывается номер листа, например "с листа 3" "на лист 1".

Для записи алгоритма любой сложности достаточно трех базовых структур :

    следование - обозначает последовательное выполнение действий (рис. 1.2, а);

    ветвление - соответствует выбору одного из двух вариантов действий (рис. 1.2, б);

    цикл-пока - определяет повторение действий, пока не будет нарушено условие, выполнение которого проверяется в начале цикла (рис. 1.2, в).

Рисунок 1.2 – Базовые алгоритмические структуры

Кроме этого, при описании алгоритмов используются дополнительные алгоритмические структуры , производные от базовых, каждая из которых может быть реализована через базовые структуры:

    выбор - выбор одного варианта из нескольких в зависимости от значения некоторой величины (рис. 1.3, а, б);

    цикл-до - повторение некоторых действий до выполнения заданного условия, проверка которого осуществляется после выполнения действий в цикле (рис. 1.3, в, г);

    цикл с заданным числом повторений (счетный цикл ) повторение некоторых действий указанное число раз (рис. 1.3, д, е).

Рисунок 1.3 – Реализация дополнительных алгоритмических структур

через базовые структуры

Рассмотрим примеры графического описания алгоритмов различных типов: линейного, разветвляющегося, циклического и комбинированного (рис. 1.4 – 1.7).

Пример 1.2. Линейный алгоритм.

Алгоритм вычисления значения выражения K=3b+6а (рис. 1.4) .

Рисунок 1.4 – Пример блок-схемы линейного алгоритма

Пример 1.3. Разветвляющийся алгоритм.

Алгоритм, определяющий, пройдет ли график функции y=3x+4 через точку с координатами x1,y1 (рис. 1.5).

Рисунок 1.5 – Пример блок-схемы разветвляющегося алгоритма

Пример 1.4. Циклический алгоритм.

Алгоритм, определяющий факториал натурального числа n (рис. 1.6):

n ! = 1*2*3*….*(n -1)* n

5!=1*2*3*4*5=120

Рисунок 1.6 – Пример блок-схемы циклического алгоритма

Пример 1.5. Комбинированный алгоритм.

Необходимо определить наибольший общий делитель двух натуральных чисел А и В.

Для решения поставленной задачи используем алгоритм Евклида, который заключается в последовательной замене большего из чисел на разность большего и меньшего, пока числа не станут равны. Рассмотрим данный алгоритм на двух примерах.

Пример (а): А=225, В=125. Применяя алгоритм Евклида, получаем для А и В наибольший общий делитель, равный 25.

Пример (б): А=13, В=4. В этом случае наибольший общий делитель А и В равен 1.

B

50-25=25

Блок-схема алгоритма Евклида для нахождения наибольшего общего делителя двух натуральных чисел показана на рис. 1.7.

Рисунок 1.7 – Пример блок-схемы комбинированного алгоритма

Блок-схема алгоритма детально отображает все особенности разработанного алгоритма, но иногда такой высокий уровень детализации не позволяет выделить суть алгоритма. В этих случаях для описания алгоритма используют псевдокод . Псевдокод базируется на тех же основных структурах, что и структурные схемы алгоритма (табл. 1.1).

Пример 1.6. Описание алгоритма Евклида на псевдокоде .

Алгоритм Евклида:

Ввести А,В

цикл-пока А ≠ В

если А > В

то А:= А - В

иначе В:= В - А

все - если

все-цикл

Вывести А

Конец алгоритма.

Таблица 1.1 – Пример псевдокода для записи базовых алгоритмических структур

Структура

Псевдокод

Структура

Псевдокод

Следование

Выбор

Все-выбор

Ветвление

Если

заданным

количеством повторений

Для =

иначе

Все - если

Все-цикл

Цикл-пока

Цикл-пока

Выполнять

Все-цикл

1.3. Задачи для составления блок-схем алгоритмов

    Дано целое число m>1.

Получить наименьшее целое k, при котором 4 k >m.

Вычислить произведение

    Дано целое число n.

Получить наименьшее число вида 2 r , превосходящее n (r - натуральное).

    Даны целые числа n, k (n  k  0).

Вычислить.

    Дано натуральное число n и действительное число a.

Вычислить произведение .

    Дано натуральное число n.

Вычислить сумму .

    Даны действительное число х и натуральное число n.

Вычислить, не используя операцию возведения в степень.

    Дано натуральное число n.

Вычислить сумму:

    Даны действительные числа x и a, натуральное n.

Вычислить:

Вычислить:

    Даны натуральные числа n, m. Получить сумму m последних цифр числа n.

    Пусть n- натуральное число. Вычислить сумму.

    Дано натуральное число n.

Вычислить сумму:

Контрольные вопросы

    Дайте определение алгоритма.

    Перечислите основные свойства алгоритмов и раскройте их сущность.

    Как подразделяются алгоритмы по типу реализуемого вычислительного процесса?

    Какие способы описания алгоритмов вам известны?

    Что понимается под графическим способом описания алгоритмов? В чем состоит преимущество данного способа перед словесным описанием алгоритма?

    Курсовая работа >> Информатика

    Весов ребер оставного дерева. 2.4 Блок -схема Рисунок 7 – Блок -схема алгоритма решения задачи 2.5 Обоснование выбора языка программирования Турбо... , интегрированную среду, намного ускоряющую процесс разработки программ. Этот программный продукт прошел...

  1. Алгоритмы и основы программирования

    Практическая работа >> Информатика, программирование

    Составление программ решения различных задач на электронных вычислительных машинах; наука, занимающаяся разработкой методов... . Блок -схема данного линейного алгоритма показана на рисунке 4. Пример 1. Вычислить при x=2,3 В общем случае, алгоритм решения ...

  2. Построение блок схем алгоритмов . Алгоритмические языки высокого уровня

    Реферат >> Информатика

    Подход к решению поставленных задач . Задачи реализованы на трех различных языках программирования. Блок -схемы алгоритмов , листинги программ... время. Алгоритм решения задачи получается более эффективным, если ис­пользовать метод пошаговой разработки , суть...

  3. Системное и программное обеспечение

    Реферат >> Информатика

    ... : Разработка блок схемы алгоритма решения задачи по контролю знаний слушателей ФПК. ОписаниеФФффуввыа блоков схемы алгоритма решения задачи . Блок 1 ... – ввести имя (обозначение) задачи , ввести...








Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока.

Образовательная - систематизация знаний, умений и навыков работы по теме “Алгоритмы и исполнители”; отработка навыков составления алгоритмов и представление их в виде блок-схем.

Воспитательная – повышение мотивации учащихся, формирование навыков самоорганизации, самостоятельности и инициативы.

Развивающая – развитие образного, логического мышления учащихся; умения анализировать и синтезировать знания; формирование у учащихся информационной культуры.

Оборудование: компьютер, проектор, экран, презентация.

ХОД УРОКА

I. Организационный момент (слайды 1, 2).

II. Актуализация опорных знаний (слайды 3, 4, 5).Что такое алгоритм?

  • Перечислите свойства алгоритма.
  • Назовите виды алгоритмов.
  • Что такое линейный алгоритм.
  • Что такое разветвляющийся алгоритм?
  • Что такое циклический алгоритм?
  • Какие виды циклического алгоритма вы знаете?
  • Назовите способы представления алгоритма.
  • Какие из приведенных фигур используются в блок-схемах?
  • 10. По данным блок-схемам назовите вид алгоритма.

    линейный

    цикл с предусловием

    разветвляющийся (полная форма)

    цикл с постусловием

    разветвляющийся (неполная форма)

    цикл с параметром

    III. Решение задач

    Учитель: Теперь мы переходим к решению задач. Будем сегодня с вами строить блок-схемы.

    Задача 1. Определить расстояние, пройденное человеком, если известно время, скорость движения, и движение было равномерным. (Cлайд 6)

  • Ребята, что нам известно из условия задачи? (Cкорость, время, движение было равномерным, значит расстояние вычисляем по формуле S=v*t )
  • Что мы с вами должны сделать прежде, чем строить блок-схему? (Cоставить алгоритм)
  • Давайте устно составим словесный алгоритм.
  • Алгоритм

    1. Ввод v, t.

    2. Вычисление s.

    3. Вывод s.

    • Скажите, какой мы получили с вами алгоритм? (Линейный алгоритм)
    • Теперь переходим к построению блок-схемы. Какие элементы блок-схемы нам понадобятся? (Начало, конец, ввод данных, вычисление расстояния, вывод результата) на экране все элементы.
    • Ребята, расставьте все элементы в нужном порядке. (На экране результат )

    Вычислить(слайд 7).

    • С чего мы начинаем? (Составляем словесный алгоритм)
    • На что в данной задаче надо обратить внимание? (Вычисляем значение дроби, в знаменателе стоит разность 7-у, которая в зависимости от значения у может быть равна нулю, в этом случае не будет решения)

    Алгоритм

    1. Ввод a, y.

    2. Если 7-у=0, то нет решения.

    4. Вывод s.

    • Скажите, какой мы получили с вами алгоритм? (Разветвляющийся алгоритм, полная форма)
    • Ребята, посмотрите на каждый пункт алгоритма и скажите какие элементы блок-схемы им соответствуют. (На экране фигуры в отдельности)
    • Каких элементов блок-схемы нам не хватает? (Начало, конец)
    • Ребята, вы мне помогите построить блок-схему, называя элементы по порядку. (На экране элементы появляются по очереди).

    Задача 3. Постройте блок-схему алгоритма подписи 10 новогодних открыток. (Слайд 8)

    Учащиеся в тетради записывают словесный алгоритм, осуществляется проверка (на экране ответ), затем строят блок-схему, осуществляется проверка (на экране ответ).

    IV. Подведение итогов урока

    V. Домашнее задание

    Для задачи 3 составить блок-схемы с использованием цикла с предусловием и постусловием.

    ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

    ЕДИНАЯ СИСТЕМА ПРОГРАММНОЙ ДОКУМЕНТАЦИИ

    СХЕМЫ АЛГОРИТМОВ, ПРОГРАММ, ДАННЫХ И СИСТЕМ

    УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И ПРАВИЛА ВЫПОЛНЕНИЯ

    ГОСТ 19.701-90
    (ИСО 5807-85)

    ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО УПРАВЛЕНИЮ КАЧЕСТВОМ ПРОДУКЦИИ И СТАНДАРТАМ

    ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

    Дата введения 01.01.92

    Настоящий стандарт распространяется на условные обозначения (символы) в схемах алгоритмов, программ, данных и систем и устанавливает правила выполнения схем, используемых для отображения различных видов задач обработки данных и средств их решения.

    Стандарт не распространяется на форму записей и обозначений, помещаемых внутри символов или рядом с ними и служащих для уточнения выполняемых ими функций.

    Требования стандарта являются обязательными.

    1. ОБЩИЕ ПОЛОЖЕНИЯ

    1.1. Схемы алгоритмов, программ, данных и систем (далее – схемы) состоят из имеющих заданное значение символов, краткого пояснительного текста и соединяющих линий.

    1.2. Схемы могут использоваться на различных уровнях детализации, причем число уровней зависит от размеров и сложности задачи обработки данных. Уровень детализации должен быть таким, чтобы различные части и взаимосвязь между ними были понятны в целом.

    1.3. В настоящем стандарте определены символы, предназначенные для использования в документации по обработке данных, и приведено руководство по условным обозначениям для применения их в:

    1) схемах данных;

    2) схемах программ;

    3) схемах работы системы;

    4) схемах взаимодействия программ;

    5) схемах ресурсов системы.

    1.4. В стандарте используются следующие понятия:

    1) основной символ - символ, используемый в тех случаях, когда точный тип (вид) процесса или носителя данных неизвестен или отсутствует необходимость в описании фактического носителя данных;

    2) специфический символ - символ, используемый в тех случаях, когда известен точный тип (вид) процесса или носителя данных или когда необходимо описать фактический носитель данных;

    3) схема - графическое представление определения, анализа или метода решения задачи, в, котором используются символы для отображения операций, данных, потока, оборудования и т.д.

    2. ОПИСАНИЕ СХЕМ

    2.1. Схема данных

    2.1.1. Схемы данных отображают путь данных при решении задач и определяют этапы обработки, а также различные применяемые носители данных.

    2.1.2. Схема данных состоит из:

    1) символов данных (символы данных могут также указывать вид носителя данных);

    2) символов процесса, который следует выполнить над данными (символы процесса могут также указывать функции, выполняемые вычислительной машиной);

    3) символов линий, указывающих потоки данных между процессами и (или) носителями данных;

    2.1.3. Символы данных предшествуют и следуют за символами процесса. Схема данных начинается и заканчивается символами данных (за исключением специальных символов, ).

    2.2. Схема программы

    2.2.1. Схемы программ отображают последовательность операций в программе.

    2.2.2. Схема программы состоит из:

    1) символов процесса, указывающих фактические операции обработки данных (включая символы, определяющие путь, которого следует придерживаться с учетом логических условий);

    2) линейных символов, указывающих поток управления;

    3) специальных символов, используемых для облегчения написания и чтения схемы.

    2.3. Схема работы системы

    2.3.1. Схемы работы системы отображают управление операциями и поток данных в системе.

    2.3.2. Схема работы системы состоит из:

    1) символов данных, указывающих на наличие данных (символы данных могут также указывать вид носителя данных);

    2) символов процесса, указывающих операции, которые следует выполнить над данными, а также определяющих логический путь, которого следует придерживаться;

    3) линейных символов, указывающих потоки данных между процессами и (или) носителями данных, а также поток управления между процессами;

    4) специальных символов, используемых для облегчения написания и чтения блок-схемы.

    2.4. Схема взаимодействия программ

    2.4.1. Схемы взаимодействия программ отображают путь активации программ и взаимодействий с соответствующими данными. Каждая программа в схеме взаимодействия программ показывается только один раз (в схеме работы системы программа может изображаться более чем в одном потоке управления).

    2.4.2. Схема взаимодействия программ состоит из:

    1) символов данных, указывающих на наличие данных;

    2) символов процесса, указывающих на операции, которые следует выполнить над данными;

    3) линейных символов, отображающих поток между процессами и данными, а также инициации процессов;

    4) специальных символов, используемых для облегчения написания и чтения схемы.

    2.5. Схема ресурсов системы

    2.5.1. Схемы ресурсов системы отображают конфигурацию блоков данных и обрабатывающих блоков, которая требуется для решения задачи или набора задач.

    2.5.2. Схема ресурсов системы состоит из:

    1) символов данных, отображающих входные, выходные и запоминающие устройства вычислительной машины;

    2) символов процесса, отображающих процессоры (центральные процессоры, каналы и т.д.);

    3) линейных символов, отображающих передачу данных между устройствами ввода-вывода и процессорами, а также передачу управления между процессорами;

    4) специальных символов, используемых для облегчения написания и чтения схемы.

    Примеры выполнения схем приведены в .

    3. ОПИСАНИЕ СИМВОЛОВ

    3.1. Символы данных

    3.1.1. Основные символы данных

    3.1.1.1. Данные

    Символ отображает данные, носитель данных не определен.

    3.1.1.2. Запоминаемые данные

    Символ отображает хранимые данные в виде, пригодном для обработки, носитель данных не определен.

    3.1.2. Специфические символы данных

    3.1.2.1. Оперативное запоминающее устройство

    Символ отображает данные, хранящиеся в оперативном запоминающем устройстве.

    3.1.2.2. Запоминающее устройство с последовательным доступом

    Символ отображает данные, хранящиеся в запоминающем устройстве с последовательным доступом (магнитная лента, кассета с магнитной лентой, магнитофонная кассета).

    3.1.2.3. Запоминающее устройство с прямым доступом

    Символ отображает данные, хранящиеся в запоминающем устройстве с прямым доступом (магнитный диск, магнитный барабан, гибкий магнитный диск).

    3.1.2.4. Документ

    Символ отображает данные, представленные на носителе в удобочитаемой форме (машинограмма, документ для оптического или магнитного считывания, микрофильм, рулон ленты с итоговыми данными, бланки ввода данных).

    3.1.2.5. Ручной ввод

    Символ отображает данные, вводимые вручную во время обработки с устройств любого типа (клавиатура, переключатели, кнопки, световое перо, полоски со штриховым кодом).

    3.1.2.6. Карта

    Символ отображает данные, представленные на носителе в виде карты (перфокарты, магнитные карты, карты со считываемыми метками, карты с отрывным ярлыком, карты со сканируемыми метками).

    3.1.2.7. Бумажная лента

    Символ отображает данные, представленные на носителе в виде бумажной ленты.

    3.1.2.8. Дисплей

    Символ отображает данные, представленные в человекочитаемой форме на носителе в виде отображающего устройства (экран для визуального наблюдения, индикаторы ввода информации).

    3.2. Символы процесса

    3.2.1. Основные символы процесса

    3.2.1.1. Процесс

    Символ отображает функцию обработки данных любого вида (выполнение определенной операции или группы операций, приводящее к изменению значения, формы или размещения информации или к определению, по которому из нескольких направлений потока следует двигаться).

    3.2.2. Специфические символы процесса

    3.2.2.1. Предопределенный процесс

    Символ отображает предопределенный процесс, состоящий из одной или нескольких операций или шагов программы, которые определены в другом месте (в подпрограмме, модуле).

    3.2.2.2. Ручная операция

    Символ отображает любой процесс, выполняемый человеком.

    3.2.2.3. Подготовка

    Символ отображает модификацию команды или группы команд с целью воздействия на некоторую последующую функцию (установка переключателя, модификация индексного регистра или инициализация программы).

    3.2.2.4. Решение

    Символ отображает решение или функцию переключательного типа, имеющую один вход и ряд альтернативных выходов, один и только один из которых может быть активизирован после вычисления условий, определенных внутри этого символа. Соответствующие результаты вычисления могут быть записаны по соседству с линиями, отображающими эти пути.

    3.2.2.5. Параллельные действия

    Символ отображает синхронизацию двух или более параллельных операций.

    Пример.

    Примечание. Процессы С, D и Е не могут начаться до тех пор, пока не завершится процесс А; аналогично процесс F должен ожидать завершения процессов В, С и D, однако процесс С может начаться и (или) завершиться прежде, чем соответственно начнется и (или) завершится процесс D.

    3.2.2.6. Граница цикла

    Символ, состоящий из двух частей, отображает начало и конец цикла. Обе части символа имеют один и тот же идентификатор. Условия для инициализации, приращения, завершения и т.д. помещаются внутри символа в начале или в конце в зависимости от расположения операции, проверяющей условие.

    Пример.

    3.3. Символы линий

    3.3.1. Основной символ линий

    3.3.1.1. Линия

    Символ отображает поток данных или управления.

    При необходимости или для повышения удобочитаемости могут быть добавлены стрелки-указатели.

    3.3.2. Специфические символы линий

    3.3.2.1. Передача управления

    Символ отображает непосредственную передачу управления от одного процесса к другому, иногда с возможностью прямого возвращения к инициирующему процессу после того, как инициированный процесс завершит свои функции. Тип передачи управления должен быть назван внутри символа (например, запрос, вызов, событие).

    3.3.2.2. Канал связи

    Символ отображает передачу данных по каналу связи.

    3.3.2.3. Пунктирная линия

    Символ отображает альтернативную связь между двумя или более символами. Кроме того, символ используют для обведения аннотированного участка.

    Пример 1.

    Если один из ряда альтернативных выходов используют в качестве входа в процесс либо когда выход используется в качестве входа в альтернативные процессы, эти символы соединяют пунктирными линиями.

    Пример 2.

    Выход, используемый в качестве входа в следующий процесс, может быть соединен с этим входом с помощью пунктирной линии.

    3.4. Специальные символы

    3.4.1. Соединитель

    Символ отображает выход в часть схемы и вход из другой части этой схемы и используется для обрыва линии и продолжения ее в другом месте. Соответствующие символы-соединители должны содержать одно и то же уникальное обозначение.

    3.4.2. Терминатор

    Символ отображает выход во внешнюю среду и вход из внешней среды (начало или конец схемы программы, внешнее использование и источник или пункт назначения данных).

    3.4.3. Комментарий

    Символ используют для добавления описательных комментариев или пояснительных записей в целях объяснения или примечаний. Пунктирные линии в символе комментария связаны с соответствующим символом или могут обводить группу символов. Текст комментариев или примечаний должен быть помещен около ограничивающей фигуры.

    Пример.

    3.4.4. Пропуск

    Символ (три точки) используют в схемах для отображения пропуска символа или группы символов, в которых не определены ни тип, ни число символов. Символ используют только в символах линии или между ними. Он применяется главным образом в схемах, изображающих общие решения с неизвестным числом повторений.

    Пример.

    4 ПРАВИЛА ПРИМЕНЕНИЯ СИМВОЛОВ И ВЫПОЛНЕНИЯ СХЕМ

    4.1. Правила применения символов

    4.1.1. Символ предназначен для графической идентификации функции, которую он отображает, независимо от текста внутри этого символа.

    4.1.2. Символы в схеме должны быть расположены равномерно. Следует придерживаться разумной длины соединений и минимального числа длинных линий.

    4.1.3. Большинство символов задумано так, чтобы дать возможность включения текста внутри символа. Формы символов, установленные настоящим стандартом, должны служить руководством для фактически используемых символов. Не должны изменяться углы и другие параметры, влияющие на соответствующую форму символов. Символы должны быть, по возможности, одного размера.

    Символы могут быть вычерчены в любой ориентации, но, по возможности, предпочтительной является горизонтальная ориентация. Зеркальное изображение формы символа обозначает одну и ту же функцию, но не является предпочтительным.

    4.1.4. Минимальное количество текста, необходимого для понимания функции данного символа, следует помещать внутри данного символа. Текст для чтения должен записываться слева направо и сверху вниз независимо от направления потока.

    Пример.

    Если объем текста, помещаемого внутри символа, превышает его размеры, следует использовать символ комментария.

    Если использование символов комментария может запутать или разрушить ход схемы, текст следует помещать на отдельном листе и давать перекрестную ссылку на символ.

    4.1.5. В схемах может использоваться идентификатор символов. Это связанный с данным символом идентификатор, который определяет символ для использования в справочных целях в других элементах документации (например, в листинге программы). Идентификатор символа должен располагаться слева над символом.

    Пример.

    4.1.6. В схемах может использоваться описание символов - любая другая информация, например, для отображения специального применения символа с перекрестной ссылкой, или для улучшения понимания функции как части схемы. Описание символа должно быть расположено справа над символом.

    Пример.

    4.1.7. В схемах работы системы символы, отображающие носители данных, во многих случаях представляют способы ввода-вывода. Для использования в качестве ссылки на документацию текст на схеме для символов, отображающих способы вывода, должен размещаться справа над символом, а текст для символов, отображающих способы ввода - справа под символом.

    Пример.

    4.1.8. В схемах может использоваться подробное представление, которое обозначается с помощью символа с полосой для процесса или данных. Символ с полосой указывает, что в этом же комплекте документации в другом месте имеется более подробное представление.

    Символ с полосой представляет собой любой символ, внутри которого в верхней части проведена горизонтальная линия. Между этой линией и верхней линией символа помещен идентификатор, указывающий на подробное представление данного символа.

    В качестве первого и последнего символа подробного представления должен быть использован символ указателя конца. Первый символ указателя конца должен содержать ссылку, которая имеется также в символе с полосой.

    Символ с полосой Подробное представление

    4.2. Правила выполнения соединений

    4.2.1. Потоки данных или потоки управления в схемах показываются линиями. Направление потока слева направо и сверху вниз считается стандартным.

    В случаях, когда необходимо внести большую ясность в схему (например, при соединениях), на линиях используются стрелки. Если поток имеет направление, отличное от стандартного, стрелки должны указывать это направление.

    4.2.2. В схемах следует избегать пересечения линий. Пересекающиеся линии не имеют логической связи между собой, поэтому изменения направления в точках пересечения не допускаются.

    Пример.

    4.2.3. Две или более входящие линии могут объединяться в одну исходящую линию. Если две или более линии объединяются в одну линию, место объединения должно быть смещено.

    Пример.

    4.2.4. Линии в схемах должны подходить к символу либо слева, либо сверху, а исходить либо справа, либо снизу. Линии должны быть направлены к центру символа.

    4.2.5. При необходимости линии в схемах следует разрывать для избежания излишних пересечений или слишком длинных линий, а также, если схема состоит из нескольких страниц. Соединитель в начале разрыва называется внешним соединителем, а соединитель в конце разрыва - внутренним соединителем.

    Пример.

    Внешний соединитель Внутренний соединитель

    4.3. Специальные условные обозначения

    4.3.1. Несколько выходов

    4.3.1.1. Несколько выходов из символа следует показывать:

    1) несколькими линиями от данного символа к другим символам;

    2) одной линией от данного символа, которая затем разветвляется в соответствующее число линий.

    Примеры.

    4.3.1.2. Каждый выход из символа должен сопровождаться соответствующими значениями условий, чтобы показать логический путь, который он представляет, с тем, чтобы эти условия и соответствующие ссылки были идентифицированы.

    Примеры.

    4.3.2. Повторяющееся представление

    4.3.2.1. Вместо одного символа с соответствующим текстом могут быть использованы несколько символов с перекрытием изображения, каждый из которых содержит описательный текст (использование или формирование нескольких носителей данных или файлов, производство множества копий печатных отчетов или форматов перфокарт).

    4.3.2.2. Когда несколько символов представляют упорядоченное множество, это упорядочение должно располагаться от переднего (первого) к заднему (последнему).

    4.3.2.3. Линии могут входить или исходить из любой точки перекрытых символов, однако требования должны соблюдаться. Приоритет или последовательный порядок нескольких символов не изменяется посредством точки, в которой линия входит или из которой исходит.

    Пример.

    5. ПРИМЕНЕНИЕ СИМВОЛОВ

    Наименование символа

    Схема данных

    Схема программы

    Схема работы системы

    Схема взаимодействия программ

    Схема ресурсов системы

    Символы данных

    Основные

    Запоминаемые данные

    Специфические

    Оперативное запоминающее устройство

    Запоминающее устройство с последовательной выборкой

    Запоминающее устройство с прямым доступом

    Документ

    Ручной ввод

    Бумажная лента

    Блок схемы онлайн представляют собой графическую модель алгоритма, в которой шаги отображаются с помощью блоков, а связи – соединяющими блоки линиями.

    Это универсальный и наглядный способ представления логики работы программы или процесса, доступный для понимания даже неспециалистам.

    Часто к составлению блок-схем прибегают именно программисты.

    Для чего нужна блок-схема программисту?

    Язык блок-схем (UML, flowchart) – это уникальный способ общения программиста с заинтересованными непрограммистами, а также элемент документации на продукт программного типа.

    В простых случаях для объяснения функционирования фрагмента кода или простенькой программки блок-схему можно создать с помощью любого .

    Но когда в программе сотни-тысячи строк, несколько десятков модулей, то лучше воспользоваться специальными программами, которые выполняютпостроение блок схемпо исходному коду.

    Программы и онлайн-сервисы для построения блок-схем

    При возникновении проблемы, современный способ мышления сразу же предлагает воспользоваться возможностями и поискать онлайн-сервис, который решил бы проблему.

    Поэтому часто ищут сервисы, которые строят по коду блок-схемы онлайн по коду, например, Delphi, Паскаль и даже блок-схемы по коду с++.

    Ввиду специфики, встречающиеся в сети наскоро собранные сервисы очень часто не соответствуют минимальным требованиям:

    • не поддерживают ряд операторов языка программирования и в результате неправильно строят схему;
    • построенные схемы не выдерживают критики в отношении аккуратности прорисовки;
    • невозможность сохранить построенную схему в требуемом формате и т.д.

    Намного эффективней искать программные приложения с требуемой функциональностью. Что касается онлайн-сервисов.

    То внимания достойны универсальные оболочки для построения блок-схем и уникальная пока библиотека .

    FCeditor

    FCeditor– это простая и симпатичная программа, которая позволяет создавать программный код из файлов.pas (Паскаль, Delfi) и.cs (С#).

    Для преобразования имеющегося файла с кодом достаточно импортировать его в программу («Файл – Импортировать»…).

    По завершении анализа файла в левой части появится дерево классов, в панели вкладок – вкладка файла, во вкладке файла – вкладки схем каждого из методов и схемы всей программы, а также вкладка кода.

    Обратите внимание! Аккуратную блок-схему можно экспортировать в один из популярных графических форматов (jpg, bmp, png, gif и tiff).

    К преимуществам программы можно отнести русский интерфейс.

    Autoflowchart

    ПрограммаAutoflowchart,при своем минималистичном оформлении, предоставляет удобный и информативный интерфейс.

    Главное окно разделено на три части: древовидное представление кода, текст кода и в правой части - большое поле, в котором отображается блок-схема.

    В программе реализована функция подсветки соответствующих элементов (на схеме, в коде и древовидной структуре) и сворачивания вложенных структур.

    Доступен экспорт не только файлы графических форматов, но и в популярные офисные приложения – документ , Visio, а также в виде файла SVG или .

    К тому же, код можно редактировать непосредственно в программе с моментальным отображением изменений в схеме.

    Поддерживает множество языков программирования: Pascal, Delphi, C++.

    Code Visual to Flowchart v6.0

    Впечатляющей функциональностью отличается программаCode Visual to Flowchart v6.0.

    Интерфейс представлен окном с тремя полями.

    В левой части находятся вкладки со структурой проекта и структурой классов, в центральной части – код программы, в правой – блок схема выделенного фрагмента.

    Пожалуй, необходимые начало и конец, преобразуемого в блок-схему кода, – особенность этой программы.

    Схема может быть экспортирована в форматы продуктов пакета , в графический формат bmp или png.

    Важно! Все упомянутые программы предоставляются на платной основе и чтобы задействовать полный функционал программ, нужно оплатить право их использования.

    Блок-схема может также служить инструментом первичной разработки программы.

    Программист сначала продумывает и фиксирует логику работы будущего программного кода с помощью блок-схемы.

    После этого с опорой на схему пишется непосредственно программный код.

    Для удобного построения блок-схем существуют онлайн-сервисы. Давайте подробнее остановимся на draw.io и google charts.

    Draw.io

    Draw.ioможно назвать универсальным онлайн-редактором блок-схем. В нем пользователю предоставляется множество разнообразных наборов блоков и удобный инструментарий.

    Любой блок может быть отформатирован и видоизменен, можно создавать собственные виды блоков и использовать внешние картинки из файлов.

    Готовую схему можно импортировать в виде документа офисного приложения (), графического растрового (png, gif и jpg) или векторного (svg) файла.

    Этот сервис с обширными функциональными возможностями не требует оплаты за использование – он бесплатный.

    Google chart

    Своеобразный и богатый инструмент для создания диаграмм, схем и визуализаций –Google chart API.

    В наше время с построением различного рода диаграмм и блок-схем сталкивается каждый дизайнер и программист. Когда информационные технологии еще не занимали такую важную часть нашей жизни, рисование этих конструкций приходилось производить на листе бумаги. К счастью, теперь все эти действия выполняются с помощью автоматизированного программного обеспечения, устанавливаемого на компьютер пользователя.

    В интернете довольно легко найти огромное количество редакторов, предоставляющих возможность создания, редактирования и экспорта алгоритмической и деловой графики. Однако не всегда легко разобраться в том, какое именно приложение необходимо в конкретном случае.

    В силу своей многофункциональности, продукт от компании Microsoft может пригодится как профессионалам, не один год занимающимся построением различных конструкций, так и обычным пользователям, которым необходимо нарисовать простую схему.

    Как и любая другая программа из серии Microsoft Office, Visio имеет все необходимые для комфортной работы инструменты: создание, редактирование, соединение и изменение дополнительных свойств фигур. Реализован и специальный анализ уже построенной системы.

    Dia

    На втором месте в данном списке вполне справедливо располагается Dia, в которой сосредоточены все необходимые современному пользователю функции для построения схем. К тому же, редактор распространяется на бесплатной основе, что упрощает его использование в образовательных целях.

    Огромная стандартная библиотека форм и связей, а также уникальные возможности, не предлагаемые современными аналогами — это ждет пользователя при обращении к Диа.

    Flying Logic

    Если вы ищете софт, с помощью которого можно быстро и легко построить необходимую схему, то программа Flying Logic — это именно то, что вам нужно. Здесь отсутствует громоздкий сложный интерфейс и огромное количество визуальных настроек диаграмм. Один клик — добавление нового объекта, второй — создание объединения с другими блоками. Еще можно объединять элементы схемы в группы.

    В отличие от своих аналогов, данный редактор не располагает большим количеством различных форм и связей. Плюс ко всему, существует возможность отображения дополнительной информации на блоках, о чем подробно рассказано в обзоре на нашем сайте.

    BreezeTree Software FlowBreeze

    FlowBreeze — это не отдельная программа, а подключаемый к самостоятельный модуль, в разы облегчающий разработку диаграмм, блок-схем и прочих инфографик.

    Безусловно, ФлоуБриз — это ПО, по большей части предназначенное для профессиональных дизайнеров и им подобных, которые разбираются во всех тонкостях функционала и понимают, за что отдают деньги. Среднестатистическим пользователям будет крайне сложно разобраться в редакторе, особенно учитывая интерфейс на английском языке.

    Edraw MAX

    Как и предыдущий редактор, Edraw MAX — это продукт для продвинутых пользователей, профессионально занимающихся подобной деятельностью. Однако, в отличие от FlowBreeze, он является самостоятельным программным обеспечением с несчетным количеством возможностей.

    По стилю интерфейса и работы Edraw очень напоминает . Не зря его называют главным конкурентом последнего.

    AFCE Редактор Блок-Схем (Algorithm Flowcharts Editor)

    Данный редактор является одним из наименее распространенных среди представленных в данной статье. Вызвано это тем, что его разработчик — обычный преподаватель из России — полностью забросил разработку. Но его продукт все-равно пользуется некоторым спросом на сегодняшний день, поскольку отлично подходит любому школьнику или студенту, который изучает основы программирования.

    Вдобавок к этому программа является полностью бесплатной, а ее интерфейс выполнен исключительно на русском языке.

    FCEditor

    Концепция программы FCEditor кардинально отличается от других представленных в данной статье. Во-первых, работа происходит исключительно с алгоритмическими блок-схемами, которые активно используются в программировании.

    Во-вторых, ФСЭдитор самостоятельно, в автоматическом режиме строит все конструкции. Все что необходимо пользователю — это импортировать готовый исходный код на одном из доступных языков программирования, после чего экспортировать конвертированный в схему код.

    BlockShem

    В программе BlockShem, к сожалению, представлено намного меньше функций и удобств для пользователей. Полностью отсутствует автоматизация процесса в любом виде. В БлокСхеме пользователь должен вручную рисовать фигуры, а после объединять их. Данный редактор скорее относится к графическим, нежели к объектным, предназначенным для создания схем.

    Библиотека фигур, к сожалению, в этой программе крайне бедна.

    Как видите, существует большой выбор софта, предназначенного для построения блок-схем. Причем различаются приложения не только количеством функций — некоторые из них предполагают фундаментально другой принцип работы, отличимый от аналогов. Поэтому сложно посоветовать, каким редактором пользоваться — каждый может подобрать именно тот продукт, который ему необходим.