Как называется процесс перегонки нефти. Перегонка нефти, первичная и вторичная переработка нефти

Владимир Хомутко

Время на чтение: 7 минут

А А

Описание веществ во фракционном составе нефтепродуктов

Фракционный состав нефти – это многокомпонентная непрерывная смесь гетероатомных соединений и углеводородов.

Обычная перегонка не способна разделить её на отдельные соединения, физические константы которых строго определены (например, температура кипения при заданном конкретном уровне давления).

Вследствие этого, нефть разделяют на отдельные компоненты, являющиеся смесями с меньшей сложностью. Они называются дистиллятами или фракциями.

В лабораторных и промышленных условиях перегонка осуществляется при постоянно растущей температуре кипения. Это позволяет проводить фракционирование углеводородных газов нефтепереработки и жидких компонентов, для которых характерна не какая-то конкретная температура кипения, а определенный температурный интервал (точка начала и конца кипения).

Атмосферная перегонка нефтяного сырья позволяет получить следующие фракции, которые выкипают при температурах до 350-ти градусов С:

  • петролейная фракция – до 100 градусов С;
  • бензиновая – начало кипения 140 градусов;
  • лигроиновая – от 140-ка до 180-ти;
  • керосиновая – от 140-ка до 220-ти;
  • дизельная фракция – от 180-ти до 350-ти градусов С.

Все фракции, выкипающие до температуры 200 градусов С, называются бензиновыми или легкими. Фракции, которые выкипают в интервале от 200-т до 300-т градусов С, называются керосиновыми или средними.

И, наконец, фракции, которые выкипают при температурах, превышающих 300 градусов С, получили название масляных или тяжелых. Кроме того, все фракции нефти, температура выкипания которых меньше 300-т градусов, называются светлыми.

Фракции, остающиеся после отбора светлых дистиллятов в процессе ректификации (первичной переработки нефти), которые выкипают при более чем 35-ти градусах, называют мазутами (темными фракциями).

Дальнейшая разгонка мазутов и их углубленная переработка выполняется в условиях вакуума.

Это позволяет получить:

  • вакуумный дистиллят (газойль) – температура кипения от 350-ти до 500 градусов С;
  • гудрон (вакуумный остаток) – температура кипения свыше 500 градусов С.

Получение нефтяных масел характеризуется следующими интервалами температур:

Кроме того, к тяжелым нефтяным компонентам также относятся асфальтовые смоло-парафиновые отложения.

Помимо своего по углеводородного состава, различные нефтяные фракции также различаются своим цветом, вязкостью и удельным весом. Самые легкие дистилляты (петролейные) – бесцветны. Далее, чем тяжелее фракция – тем темнее её цвет и выше показатели вязкости и плотности. Самые тяжелые компоненты – темно-коричневые и черные.

Описание нефтяных фракций

Петролейная

Представляет собой смесь жидких и легких углеводородов (гексанов и пентанов). Эту фракцию еще называют петролейным эфиром. Он получается из газоконденсата, легких нефтяных фракций и попутных газов. Петролейный эфир делится на легкий (интервал кипения – от 40-ка до 70-ти градусов C) и тяжелый (от 70-ти до 100-а). Поскольку это – наиболее быстро выкипающая фракция, при разделении нефти она выделяется одной из первых.

Петролейный эфир – это бесцветная жидкость, плотность которой составляет от 0,650 до 0,695 грамм на кубический сантиметр. Он хорошо растворяет различные жиры, масла, смолы и прочие соединения углеводородов, поэтому его часто используют как растворитель в жидкостной хроматографии и при экстракции из горных пород нефти, углеводородов и битумоидов.

Кроме того, именно петролейным эфиром нередко заправляют зажигалки и каталитические грелки.

Бензиновая

Эта нефтяная и конденсатная фракция является сложной углеводородной смесью различных типов строения. Около семидесяти компонентов вышеуказанной смеси имеют температуру выкипания до 125 градусов C , и ещё 130 компонентов этой фракции выкипают в промежутке от 125-ти по 150-ти градусов.

Компоненты этой углеродной смеси и служат материалом для изготовления различного топлива, применяемого в двигателях внутреннего сгорания. В состав этой смеси входят разные виды углеводородных соединений, включая разветвленные и неразветвленные алканы, вследствие чего эту фракцию часто обрабатывают термическим риформингом, который превращает в разветвленные неразветвленные молекулы.

Основу состава бензиновых нефтяных фракций составляют изомерные и нормальные парафиновые углеводороды. Из нафтеновой углеводородной группы больше всего метилциклопентана, метилциклогексан и циклогексана. Кроме того, высокая концентрация углеродных соединений легкой ароматической группы, таких, как метаксилол и толуол.

Состав фракций бензинового типа зависит от состава перерабатываемой нефти, поэтому октановое число, углеводородный состав и другие бензиновые свойства различаются, в зависимости от качества и свойств исходного нефтяного сырья. Другими словами, получить высококачественный бензин можно далеко не из любого сырья. Моторное топливо плохого качества имеет значение октанового числа, равное нулю. Высококачественное же имеет этот показатель на уровне 100.

Октановое число бензина, полученного из нефти-сырца, редко бывает больше 60-ти. Особую ценность в бензиновой нефтяной фракции представляет наличие в ней циклопентана и циклогексана, а также их производных. Именно такие углеводородные соединения служат сырьем для производства ароматических углеводородов, таких, как бензол, исходная концентрация которого в сырой нефти крайне мала.

Лигроиновая

Эту высокооктановую нефтяную фракцию называют еще тяжелая нафта. Она тоже является сложной углеводородной смесью, но состоит из более тяжелых, чем в первых двух фракциях, компонентов. В лигроиновых дистиллятах повышено до восьми процентов содержание ароматических углеводородов, что значительно больше, чем в бензиновых. Кроме того, в лигроиновой смеси в три раза больше нафтенов, чем парафинов.

Плотность этой нефтяной фракции составляет от 0,78 до 0,79 грамм на кубический сантиметр. Её применяют в качестве компонента товарного бензина, осветительного керосина и реактивного топлива. Используют её и в качестве органического растворителя, а также как наполнитель приборов жидкостного типа. До того, как активно стали использовать в промышленности дизельную фракцию, лигроин выступал как сырье для изготовления топлива, применяемого в тракторах.

Состав лигроина первой перегонки (неочищенного, полученного сразу из перегонного куба) во многом зависит от состава перерабатываемой нефти-сырца. Например, в лигроине, полученном из нефти с повышенным содержанием парафинов, больше неразветвленных насыщенных или циклических углеводородных соединений. В основном низкосернистые виды нефти и лигроина относятся к парафинистым. В нефти с высоким содержанием нафтенов, наоборот, больше полициклических, циклических и ненасыщенных углеводородов.

Для нафтеновых видов нефтяного сырья характерно высокое содержание серы. Процессы очистки лигроинов первой перегонки различаются в зависимости от их состава, который определяется составом исходного сырья.

Керосиновая

Температура кипения этой фракции при прямой атмосферной перегонке – от 180-ти до 315-ти градусов С. Показатель её плотности при двадцати градусах С составляет 0,854 грамма на кубический сантиметр. Кристаллизоваться она начинает при температуре минус шестьдесят градусов.

В этой нефтяной фракции чаще всего присутствуют углеводороды, в составе которых от девяти до шестнадцати атомов углерода. Кроме парафинов, моноциклических нафтенов и бензола, в ней содержатся и бициклические соединения, такие, как нафтены, нафтено-ароматические и ароматические углеводороды.

Их таких фракций, ввиду высокой концентрации в них изопарафинов и низкой концентрации бициклических углеводородов ароматической группы, получается реактивное топливо самого высокого качества, которое в полной мере отвечает всем современным требованиям к перспективным видам такого топлива, а именно:

  • увеличенный показатель плотности;
  • умеренное содержание углеводородов ароматической группы;
  • хорошая термическая стабильность;
  • высокие низкотемпературные свойства.

Как и в предыдущих дистиллятах, состав и качество керосина напрямую зависят от исходной нефти-сырца, определяющей характеристики получаемого продукта.

Те керосиновые фракции нефти, которые выкипают при температурах от 120-ти до 230-ти (240-ка) градусов, хорошо подходят в качестве реактивных видов топлива, для получения которых (в случае необходимости) применяется так называемая демеркаптанизации и гидроочистка. Керосины, получаемые из нефти с низким содержанием серы при температурах от 150-ти до 280-ти градусов или в температурном интервале от 150-ти до 315-ти градусов, применяют в качестве осветительных. Если же керосин выкипает при 140-ка – 200-а градусах, он идет на изготовление растворителя, известного как уайт-спирит, широко используемого на лакокрасочных предприятиях.

Дизельная

Выкипает при температурах от 180-ти до 360-ти градусов C.

Применяется как топливо для быстроходных дизельных двигателей и в качестве сырья при прочих процессах переработки нефти. При её получении также вырабатываются керосины и углеводородные газы.

В дизельных нефтяных фракциях мало углеводородов ароматической группы (менее 25-ти процентов), и характерно преобладание нафтенов над парафинами. Основу их составляют производные от циклопентана и циклогексана, что дает довольно низкие показатели температур застывания. Если дизельные компоненты, получаемые и высокопарафинистых видов нефти, отличаются высокой концентрацией нормальных алканов, вследствие чего обладают сравнительно высокой температурой застывания – от минус десяти до минус одиннадцати градусов С.

Чтобы в таких случая получить зимнее дизельное топливо, для которого необходимым показателем температуры застывания является минус 45-ть (а для арктического – и все минус 60-т), полученные компоненты подвергаются процессу депарафинизации, который проходит при участии карбамида.

Помимо этого, в дизельных компонентах присутствуют разного рода органические соединения (на основе азота и кислорода). К ним относятся различные виды спиртов, нафтеновые и парафиновые кетоны, а также хинолины, пиридины, алкилфенолы и прочие соединения.

Мазут

В этой смеси присутствуют:

  • углеводороды с массой молекул в пределах от 400-т до 1000-и;
  • нефтяные смолы (масса – от 500-т до 3000);
  • асфальтены;
  • карбены;
  • карбоиды;
  • органические соединения на основе металлов и неметаллов (железа, ванадия, никеля, натрия, кальция, титана, цинка, ртути, магния и так далее).

Свойства и качественные характеристики мазута также зависят от свойств и характеристик перерабатываемой нефти-сырца, а также от степени отгона светлых дистиллятов.

Основные характеристики мазутов:

  • вязкость при температуре 100 градусов С – от 8-ми до 80-ти миллиметров в квадрате в секунду;
  • показатель плотности по 20-ти градусах – от 0,89-ти до1-го грамма на кубический сантиметр;
  • интервал застывания – от минус 10-ти до минус 40-ка градусов;
  • концентрация серы – от 0,5 до 3,5 процентов;
  • золы – до 0,3 процентов.

Вплоть до конца девятнадцатого столетия мазуты считали непригодными для использования отходами и просто выбрасывали. В настоящее время их применяют в качестве жидкого топлива для котельных, а также используют в качестве сырье для вакуумной перегонки, поскольку тяжелые компоненты нефтяного сырья при нормальном давлении атмосферы перегнать невозможно. Это связано с тем, что в этом случае достижение нужной (весьма большой) температуры их кипения приводит к разрушению молекул.

Мазут нагревают более чем до семи тысяч градусов в специальных трубчатых печах. Он переходит в пар, после чего его разгонку осуществляют под вакуумом в ректификационных колоннах и разделяют на отдельные масляные дистилляты, а в качестве остатка получают гудрон.

Из дистиллятов, полученных из мазута, делают веретенное, цилиндровое и машинное масло. Также при обработке мазута при более низких температурах получают компоненты, которые можно в дальнейшем переработать в моторное топливо, парафин, церезин и разные виды масел.

Из гудрона путем его продувки горячим воздухом получаются битум. Из остатков, полученных после крекинга и перегонки, получают кокс.

Котельный мазут бывает следующих марок:

  • флотский Ф5 и Ф12 (относится к легкому виду топлива);
  • топочный М40 (средний вид котельного топлива);
  • топочный М100 и М200 (тяжелое котельное топливо).

Флотский мазут, как понятно из названия, применяется котлах морских и речных судов, а также как топливо для газотурбинных двигателей и установок.

Топочный мазут М40 также пригоден для использования в судовых котлах, а также подходит для использования в отопительных котельных и промышленных печах.

Мазуты М100 и М200, как правило, применяют на больших ТЭЦ.

Гудрон

Это – остаток, который образуется после всех процессов отгонки прочих нефтяных компонентов (атмосферных и вакуумных), которые выкипают при температурах ниже 450-ти – 600-т градусов.

Выход гудрона составляет от десяти до сорока пяти процентов от общей массы перерабатываемого нефтяного сырья. Он представляет собой либо вязкую жидкость, либо твердый черный продукт, похожий на асфальт, блестящий на изломе.

Гудрон состоит из:

  • парафины, нафтены и углеводороды ароматической группы – 45-95 процентов;
  • асфальтены – от 3-х до 17-ти процентов;
  • нефтяные смолы – от 2-х до 38-ми процентов.

Помимо этого, в нем присутствуют почти все металлы, содержащиеся в нефтяном сырье. К примеру, ванадия в гудроне может быть до 0,046 процента. Показатель плотности гудрона зависит от характеристик исходного сырья и от степени отгона всех светлых фракций, и варьируется от 0,95 до 1,03 грамм на кубический сантиметр. Его коксуемость колеблется от 8-ми до 26-ти процентов общей массы, а температура плавления находится в пределах от 12-ти до 55 градусов.

Гудрон широко применяется для изготовления дорожного, строительного и кровельного битумов, а также кокса, мазута, смазочных масел и некоторых видов моторного топлива.

Нефтепродукты. Методы определения фракционного состава

Для определения фракционного состава нефтепродуктов используются различные виды оборудования. В основном это – стандартизованные перегонные аппараты, оборудованные ректификационными колоннами. Такой аппарат для определения фракционного состава носит название АРН-ЛАБ- 03 (хотя есть и другие варианты).

Такая предварительная работа с применением соответствующих устройств, во-первых, необходима для составления технического паспорта на сырье, а, во-вторых, дает возможность увеличить точность погоноразделения, а также на основании полученных результатов построить кривую температуры кипения (истинной), где координатами служат температура и выход каждой фракции в процентах от общей массы (или объема).

Нефть-сырец, полученная с разных месторождений, сильно отличается по своему фракционному составу, а следовательно. и по процентному соотношению потенциальных топливных дистиллятов и смазочных масел. В основном в нефтяном сырье – от 10-ти до 30-ти процентов бензиновых компонентов, и от 40-ка до 65-ти процентов керосиново-газойлевых фракций. На одном и том же месторождении разные по глубине нефтяные пласты могут давать сырье с различными характеристиками фракционного состава.

Для определения этой важной характеристики нефтяных компонентов используются различные приборы, среди которых наиболее популярен АТЗ-01.


При перегонке нефти, основанной на разнице температур кипения отдельных компонентов, получают фракции или дистил- латы.
Каждая из фракций может быть разогнана в более узких интервалах температур. Перегонка нефти производится при атмосферном давлении. Остаток после перегонки нефти - мазут - может быть подвергнут фракционированию под вакуумом.
В табл. 9.1 приведены основные фракции перегонки нефти при атмосферном давлении.
Бензиновая фракция используется как топливо, может служить сырьем для производства индивидуальных углеводородов.
Таблица 9.1. Фракции (дистилляты) нефти

Керосиновую фракцию применяют в качестве топлива для реактивных двигателей в виде осветленного керосина и как сырье для производства лаков и красок.
Соляровое масло и дизельные фракции служат дизельным топливом и сырьем для получения жидких парафинов путем депарафинизации.
Мазут находит применение как котельное топливо и в качестве сырья во вторичных процессах переработки. После вакуумной перегонки мазута получают газойлевые, масляные фракции и гудрон. Масляные фракции используют в качестве сырья для вторичной переработки нефти в целях получения смазочных масел, кокса и битума. Гудрон применяют при подготовке асфальтовых смесей и в производстве битума.
Физические и химические процессы перегонки включают два основных этапа: нагревание до высоких температур; разделение продуктов.
Основное оборудование для нагревания - печи для нагрева сырья и промежуточных продуктов, а также различные теплообменники.
Разделение продуктов нефтеперегонки проводят в ректификационных колоннах.
Трубчатые печи являются аппаратами, предназначенными для передачи теплоты, выделяемой при сжигании топлива, нагреваемому продукту. Имеется много разновидностей трубчатых печей, используемых на установках первичной переработки, каталитического крекинга, каталитического риформинга, гидроочистки и других процессов.
На рис. 9.2 и 9.3 приведены некоторые характерные типы печей, применяемых на установках нефтеперерабатывающих заводов.
На рис. 9.2 представлена типовая трубчатая печь шатрового типа, имеющая две топочные камеры, разделенные перевальными стенками. В топочных камерах сжигается топливо. По стенкам камеры размещены трубы в виде потолочных и подовых экранов. Здесь теплота сжигаемого топлива передается трубам за счет радиации от факела, образующегося при сжигании топлива. Между перевальными стенками расположена камера конвекции, в которой теплота передается продукту, находящемуся в трубах, непосредственным соприкосновением дымовых газов. Передача теплоты в камерах конвекции тем эффективнее, чем выше скорость дымовых газов в печи и чем больше поверхность труб конвекционного пучка. Сырье в печи сначала направляется в конвекционную камеру, а затем - в камеру радиации. Основная доля теплоты нагреваемому сырью или продукту передается в камере радиации (70 - 80 %), на долю конвекционной камеры приходится 20-25 %. В топочные камеры с помощью форсунок подают распыленное топ-

Рис. 9.2. Типовая двухкамерная трубчатая печь шатрового типа:
1- потолочный экран; 2- конвективный пучок труб; 3- трубная решетка конвективного пучка; 4- взрывное окно; 5- трубная подвеска; 6- каркас печи; 7- смотровой люк; 8- подвесная кладка; 9- туннель для форсунки;
10- подовый экран

ливо, а также необходимый для горения воздух. Топливо интенсивно перемешивается с воздухом, что обеспечивает его эффективное горение.
Температура на входе сырья в печь зависит от степени использования теплоты отходящих горячих продуктов из ректификационных колонн и составляет обычно 180 - 230 °С. Температура выхода сырья из печи зависит от фракционного состава сырья. При атмосферной перегонке нефти температура поддерживается на уровне 330-360 °С, а при вакуумной перегонке - 410 - 450 °С. Температура дымовых газов, покидающих печь и направляемых в дымовую трубу, зависит от температуры поступающего в печь сырья и превышает ее на 100-150 °С. В отдельных случаях отходящие газы направляют в теплообменник для использования их тепловой энергии.
Теплообменники выполняют различные функции и используют разные теплоносители. На долю теплообменников приходится до 40 % металла всего оборудования технологических установок.
На рис. 9.4 представлен теплообменник-испаритель. Теплообменники такого типа применяют для внесения тепла в нижнюю

а - двухкамерная коробчатого типа с излучающими стенками; б- двухкамерная коробчатого типа с верхним отводом газов сгора-
ния и с экранами двухстороннего облучения; в - с объемно-настильным сжиганием топлива


Рис. 9.4. Теплообменник с паровым пространством (испаритель):
1- штуцер для удаления трубного пучка; 2 - днише; 3 - люк-лаз; 4- корпус; 5- сливная пластина; б- «плавающая головка»; 7- трубный пучок; 8- распределительная камера

часть ректификационной колонны тех технологических установок, где не требуется подогрев до высоких температур.
Теплообменник-испаритель состоит из корпуса 4, в котором находится трубный пучок 7 с «плавающей головкой» 6. Внутри корпуса установлена сливная пластина 5. Трубный пучок одной стороной соединен с распределительной камерой, имеющей внутри сплошную горизонтальную перегородку. Камера имеет два штуцера для входа и выхода теплоносителя (пара или горячего нефтепродукта). На корпусе расположено три штуцера: один - для входа нагреваемого углеводородного продукта, второй - для выхода отпаренного нефтепродукта после сливной пластины и третий - для выхода паров и направления их в ректификационную колонну.
Уровень продукта в испарителе поддерживается сливной перегородкой 5 так, что при нормальной работе пучок 7 полностью покрыт отпариваемым нефтепродуктом. По трубному пучку направляют теплоноситель (насыщенный пар или горячий нефтепродукт). Отдав свое тепло нагреваемой среде, теплоноситель выходит через другой штуцер.
С начала 80-х годов XX в. на НПЗ началась массовая замена водяных холодильников конденсаторами воздушного охлаждения. Их применение позволило снизить затраты на эксплуатацию теплообменников и решить ряд экологических проблем. Аппараты воздушного охлаждения (АВО) (рис. 9.5) оборудованы плоскими трубными пучками, по которым проходит охлаждаемый поток
нефтепродуктов. Через этот пучок направляют поток воздуха, нагнетаемый вентилятором.
Ректификационные колонны представляют собой аппараты для разделения продуктов, имеющих различную температуру кипения. Чаще всего они оборудованы барботажными колпаками. Ректификационная колонна представляет собой как бы несколько самостоятельных установок, поставленных друг на друга, с отбором проб по высоте колонны. Процесс перегонки ведут в ректификационных колоннах под давлением (рис. 9.6).
Сырую нефть нагревают первоначально в теплообменнике до температуры 170- 180 °С и направляют в трубчатую печь, где нефть находится под некоторым избыточным давлением и нагревается до 300 - 350 °С. Нагретая парожидкостная смесь подается в нижнюю часть ректификационной колонны. Давление снижается, происходит испарение легких фракций и отделение их от жидкого остатка - мазута. Пары поднимаются в верхнюю часть колонны, контактируя с нисходящим потоком (флегмой). В результате этого наиболее легкие вещества концентрируются в верхней части колонны, наиболее тяжелые - в нижней части, а промежуточные продукты - между ними. По ходу движения продуктов идет их отбор.
Так как более легкие продукты (пар) должны проходить через более тяжелые продукты (жидкость) и находиться с ними в равновесии в любом месте колонны, то в каждом потоке присутству-

Рис. 9.5. Аппарат воздушного охлаждения с горизонтальным расположением секций


Рис. 9.6. Ректификационная колонна с боковой отпарной секцией:
I - печь для подогрева; 2- ректификационная колонна

ют очень летучие компоненты, так называемые головные погоны нефти.
Для удаления легких фракций из бокового погона иногда предусматривается отпарная колонна (секция). Боковой погон поступает в верхнюю часть отпарной секции, легкие фракции отгоняются паром в противотоке и вновь направляются в основную колонну.
Имеются три вида отходов фракционирования сырой нефти: вода, отводимая из верхнего сборника перед рециркуляцией, содержит сульфиды, хлориды, меркаптаны и фенол; слив из линий для отбора проб нефти. Эта вода содержит повышенную концентрацию нефти, иногда - в виде эмульсий; устойчивая нефтяная эмульсия, образующаяся в барометрических конденсаторах, используемых для создания вакуума.
На современных нефтеперерабатывающих заводах вместо барометрических конденсаторов применяют поверхностные конденсаторы, состоящие из ряда последовательно установленных кожухотрубных теплообменников, в которых охлаждаются конденсирующиеся вещества, а вода для охлаждения не имеет прямого контакта с конденсатором.

Первичная перегонка нефти – первый технологический процесс переработки нефти. Установки первичной переработки имеются на каждом нефтеперерабатывающем заводе.

Прямая перегонка основана на разнице в температурах кипения групп углеводородов, близких между собой по физическим свойствам.

Перегонка или дистилляция – это процесс разделения смеси взаимнорастворимых жидкостей на фракции, которые отличаются по температурам кипения как между собой, так и с исходной смесью. При перегонке смесь нагревается до кипения и частично испаряется; получают дистиллят и остаток, которые по составу отличаются от исходной смеси. На современных установках перегонка нефти проводится с применением однократного испарения. При однократном испарении низкокипящие фракции, перейдя в пары, остаются в аппарате и снижают парциальное давление испаряющихся высококипящих фракций, что даёт возможность вести перегонку при более низких температурах.

При однократном испарении и последующей кондесации паров получают две фракции: лёгкую, в которой содержится больше низкокипящих компонентов, и тяжёлую, в которой содержится меньше низкокипящих компонентов, чем в исходном сырье, т.е. при перегонке происходит обогащение одной фазы низкокипящими, а другой высококипящими компонентами. При этом достичь требуемого разделения компонентов нефти и получить конечные продекты, кипящие в заданных температурных интервалах, с помощью перегонки нельзя. В связи с этим после однократного испарения нефтяные пары подвергаются ректификации.

Ректификация – диффузионный процесс разделения жидкостей, различающихся по температурам кипения, за счёт противоточного многократного контактирования паров и жидкости.

На установках первичной перегонки нефтти однократное испарение и ректификация, как правило, совмещаются.

В настоящее время прямая перегонка нефти осуществляется в виде непрерывного процесса в так называемых атмосферно-вакуумных трубчатых установках (рис. 4), основными аппаратами которых являются трубчатая печь и ректификационная колонна.

Рис. 4. Схема атмосферно-вакуумной установки для перегонки

1,5 - трубчатые печи; 2,6 – ректификационные колонны; 3 – теплообменники;

4 - конденсаторы

Основы процесса сводятся к тому, что нефть, нагретая до 350 0 С в трубчатой печи, поступает в среднюю часть нижней секции ректификационной колонны, работающей под атмосферным давлением. При этом её бензиновая, керосиновая и другие фракции, кипящие в интервале температур от 40 до 300 0 С, оказываются перегретыми по отношению к нефти, имеющей температуру 350 0 С, и поэтому сразу превращаются в пар. В ректификационной колонне пары этих низкокипящих фракций устремляются вверх, а высококипящий мазут стекает вниз. Это приводит к неодинаковой температуре по высоте колонны. В её нижней части температура самая высокая, а в верхней - самая низкая.

Поднимающиеся вверх пары углеводородов при соприкосновении с более холодной жидкостью, стекающей вниз, охлаждаются и частично конденсируются. Жидкость при этом нагревается и из неё испаряются более летучие фракции. В результате состав жидкости и пара изменяется, так как жидкость обогащается труднолетучими углеводородами, а пары - легколетучими. Такой процесс конденсации и испарения вследствие неодинаковости температуры по высоте колонны приводит к своеобразному расслаиванию углеводородах фракций по температурам кипения, а следовательно, и по составу. Для интенсификации этого расслаивания внутри колонны устанавливаются специальные разделительные полки, называемые тарелками. Тарелки представляют собой перфорированные стальные листы сотверстиями для жидкости и пара. В некоторых конструкциях отверстия с выступами для выхода пара прикрыты колпачками, а для жидкости предусмотрены сливные трубки (рис. 5).

Рис. 5. Схема устройства и работы ректификационной тарельчатой колонны:

1 – тарелки; 2 – патрубки; 3 – колпачки; 4 – сливные стаканы; 5 – стенки колонны

На такой тарелке поднимающиеся сверху пары пробулькивают в жидкость из под колпачков, интенсивно перемешивая и превращая её в пенный слой. Высококипящие углеводороды при этом охлаждаются, конденсируются и остатки в жидкости, в то время как растворённые в жидкости низкокипящие углеводороды, нагреваясь, переходят в пар. Пары поднимаются на верхнюю тарелку, а жидкость перетекает на нижнюю. Там процесс конденсации и испарения снова повторяется. Обычно в ректификационной колонне, имеющей высоту 35-45 м, устанавливается до 40 тарелок. Достигаемая при этом степень разделения позволяет конденсировать и отбирать фракции по высоте колонны в строго определённом интервале температур. Так, при 300-350 0 С конденсируется и отбирается соляровое масло, при температуре 200-300 0 С - керосиновая фракция, при температуре 160-200 0 С - лигроиновая фракция. Не сконденсировавшиеся пары бензиновой фракции с температурой 180 0 С выводятся через верхнюю часть колонны, где охлаждаются и конденсируются в специальном теплообменнике. Часть охлаждённой бензиновой фракции возвращается на орошение верхней тарелки колонны. Это делается для того, чтобы соприкосновением горячих паров с охлаждённой бензиновой фракцией тщательнее отделить легколетучие углеводороды и сконденсировать примеси менее летучих, стекающих вниз. Такая мера позволяет получить более чистый и более качественный бензин с октановым числом от 50 до 78.

При более тщательной разгонке бензиновая фракция может быть разделена на газолин (петролейный эфир) - 40-70 0 С, собственно бензин - 70-120 0 С и лигроин 120-180 0 С.

В самой нижней части ректификационной колонны собирается мазут. В зависимости от содержания в нём сернистых соединений он может служить котельным топливом либо сырьём для получения смазочных масел или дополнительных количеств моторного топлива и нефтяных газов. Обычно при содержании в мазуте серы более 1% его используют как высококалорийное котельное топливо, и на этой стадии перегонку прекращают, сводя процесс к одностадийному. При необходимости получения из мазута смазочных масел его подвергают дальнейшей перегонке во второй ректификационной колонне, работающей под вакуумом. Такая схема называется двухстадийной. Двухстадийный процесс отличается от одностадийного меньшим расходом топлива и более высокой интенсивностью работы аппаратуры, что достигается использованием вакуума и более высокой степенью утилизации тепла. Использование вакуума на второй стадии перегонки предотвращает расщепление тяжёлых углеводородов, снижает температуру кипения мазута и тем самым уменьшает расход топлива на его нагревание.

Сущность второй стадии сводится к нагреванию мазута раскалёнными газами до 420 0 С в трубчатой печи и к последующей его разгонке в ректификационной колонне. В результате образуется до 30 % гудрона и до 70 % масляных компонентов, являющихся сырьём для получения смазочных масел. Примерный выход и температура отбора масляных фракций мазута приведены в табл. 15.

Для большей экономии тепла и улучшения технико-экономических показателей работы атмосферно-вакуумных установок нагревание нефти до 350 0 С ведут в два этапа.

Таблица 15

Фракции перегонки мазута

В начале её предварительно нагревают до 170-175 0 С теплом продуктов перегонки (последние при этом охлаждаются), а затем в трубчатой печи теплом раскалённых газов. Такая утилизация тепла позволяет сократить расход топлива на проведение процесса и снизить себестоимость первичной переработки.

Нефть представляет собой полезное ископаемое, имеющее консистенцию маслянистой жидкости. Данное горючее вещество в основном имеет черный цвет, но это зависит от района его добычи. Рассматривая нефть с химической точки зрения, можно сказать, что это вещество является сложной смесью углеводородов, в которой также присутствуют такие примеси соединений, как сера, азот и пр. Запах жидкости зависит от содержания в ее составе сернистых соединений и ароматических углеводородов. Нефть использовали в различных целях, но только в прошлом веке начала использоваться прямая перегонка нефти, она стала главным сырьем для изготовления топлива и множества органичных составов.

Состав нефти

Впервые изучением нефти в XIX веке начал заниматься Карл Шорлеммер, который являлся известным немецким химиком. В ходе проведения исследований вещества он обнаружил в нем простейшие углеводороды бутан (С4Н10), гексан (С6Н14) и пентан (С5Н12). Спустя некоторое время российский ученый В. В. Марковников в процессе исследования обнаружил в нефти достаточное количество циклических насыщенных углеводородов — циклопентана (С5Н10) и циклогексана (С6Н12).

На сегодняшний день установлено, что нефть и нефтепродукты соответственно имеют в своем составе более одной тысячи различных веществ, но некоторые из них представлены в малом количестве. Стоит отметить, что в данном веществе содержатся алициклические, насыщенные, ненасыщенные и ароматические углеводороды, имеющие разнообразное строение. В состав нефти также могут входить соединения азота, серы, а также кислородсодержащие соединения (фенолы и кислоты).

В настоящее время технология переработки нефти включает в себя такие процессы: однократная перегонка нефти и ратификация смесей. К ней часто применяются обобщенные наименования.

В процессе разделения нефти путем перегонки и ратификации получают фракции и дистилляты. Они выкипают при определенных температурах и представляют собой довольно сложные смеси. При этом отдельные фракции нефти в некоторых случаях состоят из небольшого количества компонентов, значительно различающихся температурами кипения. По этой причине смеси могут классифицироваться на дискретные, непрерывные и дискретно-непрерывные.

Продукты переработки нефти

К продуктам переработки относится парафин, вазелин, церезин, различные масла и прочие вещества с выраженными водоотталкивающими свойствами. Благодаря данной особенности их применяют для изготовления чистящих средств и кремов.

Так называемая первичная перегонка нефти выполняется благодаря естественному напору подземных вод, которые располагаются под нефтяной залежью. Под давлением нефть будет поднята на поверхность с глубины. Ускорить процедуру можно с применением насосов. Данная процедура позволяет добыть около 25-30% нефти. Для вторичной добычи в нефтяной пласт в основном накачивают воду или же нагнетают диоксид углерода. В результате этих действий на поверхность можно вытеснить еще примерно 35% вещества.

В процессе первичной перегонки нефти и вторичной термической переработки выделяются продукты перегонки нефти, в которых содержится сероводород. В значительной степени это зависит от условий предварительной сепарации нефти, а также эксплуатируемых месторождений. Содержание в составе нефти сероводорода является важным показателем, определяющим множество факторов.

Методы переработки нефти. Фракционная перегонка

Главным методом переработки является фракционная перегонка нефти. Данная процедура подразумевает разделение вещества на фракции, которые отличаются по составу. Дистилляция основана на различии в температурах кипения компонентов нефти.

Фракция представляет собой химическую часть вещества с одинаковыми физическими и химическими свойствами, которая выделяется в процессе перегонки.

Прямая перегонка представляет собой физический метод переработки нефти с применением атмосферно-вакуумной установки.

Принцип работы атмосферно-вакуумной установки

В специальной трубчатой печи происходит нагрев нефти при температуре 350°С. В результате этой процедуры образуется смесь жидкого остатка и паров вещества, которая поступает в ректификационную колонну с теплообменниками.

Далее соблюдается схема перегонки нефти, которая предусматривает осуществление в ректификационной колонне разделения паров нефти на фракции, которые составляют собой различные нефтепродукты. При этом температура их кипения имеет различия в несколько градусов.

Тяжелые фракции вещества поступают в устройство в жидкой фазе. Они отделяются от паров в нижней ее части и в виде мазута отводятся из нее.

Применяются следующие способы перегонки нефти для получения топлива в зависимости от химического состава нефти. В первом случае отбирают авиационные бензины в интервале температур кипения от 40 до 150°С, а также керосин для производства реактивного топлива - от 150 до 300°С. Во втором случае добывают автомобильные бензины при температуре кипения от 40 до 200°С, а дизельные топлива - от 200 до 350°С.

Мазут, который остается после отгона топливных фракций, применяют для образования крекинг-бензинов и масел. Углеводороды, имеющие температуру кипения меньше 40°С, используются в качестве сырья для изготовления определенных синтетических продуктов, добавок к некоторым бензинам, а также как топливо для автомобилей.

Таким образом, вакуумная перегонка нефти позволяет добыть такие дистилляты: бензин, керосин, соляр, лигроин и газойль. Средний выход бензиновых фракций зависит от характеристик добываемого вещества и варьируется от 15 до 20%. Доля остального топлива составляет до 30%. Лигроин обладает большей плотностью, нежели бензин, и применяется для создания высокооктановых бензинов, а также в качестве дизельного топлива для автомобилей. Газойль представляет собой промежуточный продукт между смазочными маслами и керосином. Его образовывает прямая перегонка нефти, после чего его применяют в качестве сырья для каталитического крекинга и топлива для дизелей.

Продукты, получаемые в результате прямой перегонки, отличаются высокой химической стабильностью благодаря отсутствию в своем составе непредельных углеводородов.

Крекинг

Увеличить выход бензиновых фракций можно благодаря применению крекинг-процессов для переработки нефти. Крекинг представляет собой процесс перегонки нефти и нефтепродуктов, который основан на расщеплении молекул сложных углеводородов в условиях высоких давлений и температур. В 1875 году крекинг был впервые предложен А.А. Летним, российским ученым, после чего он был разработан в 1891 году В.Г. Шуховым. Несмотря на это, первая промышленная установка, в которой предусматривалась прямая перегонка, была сооружена в США.

Крекинг делится на следующие виды: термический, каталитический, гидрокрекинг и каталитический риформинг. Термический крекинг применяется для образования бензина, керосина и дизельного топлива. К примеру, при температуре до 500°С и давлении 5 МПа имеющийся в составе дизельного топлива и керосина углеводород цетан разлагается на вещества, которые входят в состав бензина.

Термический крекинг

Бензин, создаваемый путем термического крекинга, обладает невысоким октановым числом и большим содержанием непредельных углеводородов. Из этого можно сделать вывод, что бензин имеет плохую химическую стабильность. Поэтому его будут применять только в качестве компонента для образования товарных бензинов.

На сегодняшний день установки для термического крекинга не сооружаются. Это объясняется тем, что с их помощью получают продукты перегонки нефти, которые в условиях хранения окисляются. В них образовываются смолы, поэтому в вещество вводят специальные присадки, предназначенные для снижения степени осмоления.

Каталитический крекинг

Каталитический крекинг представляет собой процесс перегонки нефти для получения бензина, который основан на расщеплении углеводородов и изменении их структуры, что происходит благодаря катализатору и высоким температурам. Впервые каталитический крекинг был осуществлен в 1919 году в России на заводской установке.

При каталитическом крекинге в качестве сырья применяют фракции соляра и газойля, которые образуются в случае прямой перегонки нефти. Их нагревают до температуры около 500°С при соблюдении давления 0,15 МПа с использованием алюмоселикатного катализатора. Он позволяет ускорить процедуру расщепления молекул сырья и превращает продукты распада в ароматические углеводороды. Прямая перегонка позволяет бензинам иметь большее октановое число, нежели при термическом крекинге. Продукты каталитического крекинга представляют собой обязательные составляющие топлива марки А-72 и А-76.

Гидрокрекинг

Гидрокрекинг представляет собой процедуру переработки, которая распространяется на нефть и нефтепродукты. Он состоит из крекирования и гидрирования сырья. Его выполняют в условиях температуры около 400°С и давления водорода до 20 МПа. При этом используются специальные молибденовые катализаторы. В таком случае октановое число бензиновых фракций будет еще больше. Данный процесс также способен повысить выход светлых нефтепродуктов, таких как реактивное и дизельное топливо, бензин.

Каталитический риформинг

Сырьем для каталитического риформинга служат бензиновые фракции, получаемые при температуре не более 180°С в процессе первичной перегонки нефти. Данную процедуру производят в условиях водосодержащего газа. При этом температура составляет около 500°С, а давление 4 МПа. Также применяется платиновый или молибденовый катализатор.

Гидроформингом называют риформинг с применением молибденового катализатора, а платформингом - процедуру с использованием платинового катализатора. Более простым и безопасным методом является платформинг, поэтому его применяют намного чаще. Для получения высокооктанового компонента автомобильных бензинов используют каталитический риформинг.

Получение смазочных масел

В 1876 году В.И. Рогозиным был сооружен первый в мире завод по изготовлению мазута и масел около Нижнего Новгорода. Рассматривая способ производства, масла можно разделить остаточные и дистиллятные масла. В первом случае мазут нагревают до температуры около 400°С в вакуумной колонне. Из мазута выходит только 50% дистиллятных масел, а остальная часть состоит из гудрона.

Остаточные масла представляют собой очищенные гудроны. Для их образования полугудрон или мазут дополняют сжиженным пропаном, в условиях невысокой температуры около 50°С. Прямая перегонка позволяет производить трансмиссионные и авиационные масла. В смазочных маслах, которые будут получены из мазута, содержатся углеводороды. Кроме них, имеются сернистые соединения, нафтеновые кислоты, а также смолисто-асфальтовые вещества, поэтому необходимо выполнять их очистку.

Нефтеперерабатывающая промышленность России

Нефтеперерабатывающая промышленность представляет собой отрасль нефтяной промышленности России. На данный момент в стране действует более тридцати крупных предприятий, специализирующихся на переработке нефти. Ими добываются большие объемы автомобильного бензина, дизельного топлива и мазута. Преимущественное количество предприятий начало свое существование в последние два десятилетия. При этом некоторые из них занимают лидирующие позиции на рынке.

В большинстве случаев ими применяется фракционная перегонка нефти, которая наиболее актуальна в современных условиях. Предприятиями изготавливаются высококачественные средства, которые пользуются большим спросом не только на отечественном, но и на мировом рынке.

Фракции нефти определяются лабораторным путем, поскольку продукт содержит органические вещества, обладающие разным давлением насыщенных паров. О температуре кипения, как таковой, говорить нельзя, но вычисляется начальная точка и предел. Определенный интервальный промежуток кипения нефти +28-540°С. По нему определяется фракционный состав нефти. Он регламентирован стандартом ГОСТ 2177-99. За начало кипения принята температура, при которой появляется конденсат. Завершением кипения считается момент прекращения испарения паров. Лабораторные испытания проходят на перегонных аппаратах, где фиксируются устойчивые показания и выводится кривая температур кипения методом перегонки. Разделение нефти и нефтепродуктов на фракции до +200°С производится при атмосферном давлении. Остальные в более высоких температурах отбираются под вакуумом, чтобы не произошло разложения.

Методы определения фракционного состава нефтепродуктов

Фракционирование нефти необходимо, чтобы выбрать направления переработки сырьевой базы, узнать точное содержание базовых масел при перегонке нефти. На основании этого классифицируются все свойства фракций.

  • Метод A — использование автоматических аппаратов для определения фракционного состава нефти и отдельных псевдокомпонентов. Колбы используются из термостойкого стекла, дно и стенки которых одинаковой толщины.
  • Метод B – применение четырехгнездного, или шестигнездного аппарата. Колбы с круглым дном вместимостью 250 см3. Метод применяется только для разгонки темных нефтепродуктов.

Виды и свойства нефтяных фракций

Фракционный состав нефти определяется согласно российскому стандарту перегонки или ректификации, который соответствует разгонке Эглера. В основе разделение сложного состава углеводных газов на промежуточные элементы. На основе кипения высоких температур классифицируется 3 вида переработки нефти.

  • Простая перегонка - во время испарения пар конденсирует.
  • Дефлегмация - только высококипящие пары выделяют конденсат и возвращаются обратно в общую смесь в виде флегмы. Низкокипящие пары полностью испаряются.
  • Ректификация - процесс соединения двух предыдущих видов обработки, когда достигается максимальная концентрация и конденсирование низкокипящих паров.

В процессе определения фракционного состава нефти и нефтепродуктов, а также их свойств, происходит разделение на следующие виды фракций:

  • легкие (к этому типу относят бензиновую и петролейную) – выходят при температуре до 140°С при атмосферном давлении;
  • средние (сюда относятся: керосиновая, дизельная, лигроиновая) при атмосферном давлении в интервале температур 140-350°С;
  • при вакуумной переработке и температурах более 350°С получаются фракции, которые называют тяжелые (Вакуумный газойль, гудрон).

Фракции также делят на светлые (сюда относят легкие и средние) и темные или мазуты (это тяжелые фракции).

Фракции нефти таблица

А теперь подробнее об основных видах нефтяных фракций:

Петролейная фракция

Эфир или масло Шервуда - это бесцветная жидкость, которая состоит из пентана и гексана. Сразу испаряется при невысоких температурах. Является растворителем для создания экстрактов, топливо для зажигалок, горелок. Получается при температурах до + 100°С.

Бензиновая фракция

Бензиновая фракция нефти построена на сложной схеме углеродных соединений, которые выкипают при температуре + 140°С. Основное применение — используется для получения топлива к двигателям внутреннего сгорания и в качестве сырья в нефтехимии. В основе бензиновой фракции парафиновые вещества: метилциклопентан, циклогексан, метилциклогексан. Бензин содержит жидкие алканы в составе- природные, попутные, газообразные. Они подразделяются также на разветвленные и неразветвленные. Состав зависит от качественного соотношения компонентов сырья. Это говорит о том, что хороший бензин получается далеко не их всех сортов нефти. Ценность вида в том, что в процессе распада на соединения, образуются ароматические углеводороды, доля которых в сырьевой массе катастрофически мала.

Лигроиновая фракция

Подвид включает в себя тяжелые элементы. Насыщенность ароматическими углеводородами больше, чем у других соединений. Является компонентом для производства товарных бензинов, осветительных керосинов, реактивного топлива, органическим растворителем. Выступает как наполнитель бытовой техники. Химический состав: полициклические, циклические и ненасыщенные углеводороды. Отличается наличие серы, процент от общей массы которой зависит от месторождения, уровня залегания и качества сырьевого продукта.

Керосиновая фракция

Керосиновая фракция нефти — в первую очередь это топливо для реактивных двигателей. Используется в производстве лакокрасочной продукции и добавляется как растворитель в краску для стен и полов. Выступает сырьем в процессах синтеза веществ. Соединения углеводов с повышенным содержанием парафина. Наблюдается низкое содержание ароматических углеводов. Керосиновая фракция выделяется при атмосферной перегонке в пределах + 220°С.

Дизельная фракция

Подвид находит применение в изготовлении дизельного топлива для быстроходных видов транспорта, а также используется как вторичное сырье. В процессе обработки выделяется керосин, используемый для в лакокрасочной промышленности и приборостроении, изготовлении химии для автотранспорта. Преобладание смесей углеводородов нафтена. Для получения топлива, которые не застывает при -60°С, состав проходит карбамидную депарафинизацию. Это перемешивание всех компонентов в течение 1 часа и последующая фильтрация через воронку Бюхнера.

Мазут

Качественный состав смеси: масла смол, органические соединения с микроэлементами. Углеводородные компоненты: асфальтен, карбен, карбоид. При вакуумной перегонке из мазута производится гудрон, парафин, технические масла. Основное применение - жидкое топливо для котельных за характеристики вязкости. Топочный мазут подразделяется на 3 основных вида: флотский, средне-котельный и тяжелый. Последний применяется на ТЭЦ, средний вид - в котельных предприятий. Флотский - неотъемлемая часть работы судоходного транспорта.

Гудрон

Качество компонентов в процентном соотношении определяется так:

  • Парафин, нафтен - 95%.
  • Асфальтен - 3%.
  • Смолы - 2%.

Вакуумный гудрон получается в результате завершения всех процессов разделения и перегонки. Температура выкипания + 500°С. На выходе получается вязкая консистенция черного цвета. Жидкостный состав используется в дорожном строительстве. Из него производят битумы для кровельных материалов. Гудрон необходим для создания кокса - продукта стратегического назначения. Компонент используется в изготовлении котельного топлива. В нем сконцентрирован самый большой процент тяжелых металлов, содержащихся в нефти.

Сырьевые показатели нефтепродуктов зависят от глубины залегания и вида месторождения. Это учитывается при формировании фракций нефти и достижения процентного соотношения компонентов.