Что делится атмосфера. Строение атмосферы

СТРОЕНИЕ АТМОСФЕРЫ

Атмосфе́ра (от. др.-греч. ἀτμός - пар и σφαῖρα - шар) - газовая оболочка (геосфера), окружающая планету Земля. Внутренняя её поверхность покрывает гидросферу и частично земную кору, внешняя граничит с околоземной частью космического пространства.

Физические свойства

Толщина атмосферы - примерно 120 км от поверхности Земли. Суммарная масса воздуха в атмосфере - (5,1-5,3)·10 18 кг. Из них масса сухого воздуха составляет (5,1352 ±0,0003)·10 18 кг, общая масса водяных паров в среднем равна 1,27·10 16 кг.

Молярная масса чистого сухого воздуха составляет 28,966 г/моль, плотность воздуха у поверхности моря приблизительно равна 1,2 кг/м 3 . Давление при 0 °C на уровне моря составляет 101,325 кПа; критическая температура - −140,7 °C; критическое давление - 3,7 МПа; C p при 0 °C - 1,0048·10 3 Дж/(кг·К), C v - 0,7159·10 3 Дж/(кг·К) (при 0 °C). Растворимость воздуха в воде (по массе) при 0 °C - 0,0036 %, при 25 °C - 0,0023 %.

За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м 3 , барометрическое давление 101,35 кПа, температура плюс 20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.

Строение атмосферы

Атмосфера имеет слоистое строение. Слои атмосферы отличаются друг от друга температурой воздуха, его плотностью, количеством водяного пара в воздухе и другими свойствами.

Тропосфе́ра (др.-греч. τρόπος - «поворот», «изменение» и σφαῖρα - «шар») - нижний, наиболее изученный слой атмосферы, высотой в полярных областях 8-10 км, в умеренных широтах до 10-12 км, на экваторе - 16-18 км.

При подъёме в тропосфере температура понижается в среднем на 0,65 К через каждые 100 м и достигает 180-220 K в верхней части. Этот верхний слой тропосферы, в котором снижение температуры с высотой прекращается, называюттропопаузой. Следующий, расположенный выше тропосферы, слой атмосферы называется стратосфера.

В тропосфере сосредоточено более 80 % всей массы атмосферного воздуха, сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, формируются и атмосферные фронты, развиваютсяциклоны и антициклоны, а также другие процессы, определяющие погоду и климат. Происходящие в тропосфере процессы обусловлены, прежде всего, конвекцией.

Часть тропосферы, в пределах которой на земной поверхности возможно зарождение ледников, называется хионосфера .

Тропопа́уза (от греч. τροπος - поворот, изменение и παῦσις - остановка, прекращение) - слой атмосферы, в котором прекращается снижение температуры с высотой; переходный слой от тропосферы к стратосфере. В земной атмосфере тропопауза расположена на высотах от 8-12 км (над уровнем моря) в полярных районах и до 16-18 км над экватором. Высота тропопаузы зависит также от времени года (летом тропопауза расположена выше, чем зимой) и циклонической деятельности (в циклонах она ниже, а в антициклонах - выше)

Толщина тропопаузы составляет от нескольких сотен метров до 2-3 километров. В субтропиках наблюдаются разрывы тропопаузы, обусловленные мощными струйными течениями. Тропопауза над отдельными районами часто разрушается и формируется заново.

Стратосфе́ра (от лат. stratum - настил, слой) - слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11-25 км (нижний слой стратосферы) и повышение её в слое 25-40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузойи является границей между стратосферой и мезосферой. Плотность воздуха в стратосфере в десятки и сотни раз меньше чем на уровне моря.

Именно в стратосфере располагается слой озоносферы («озоновый слой») (на высоте от 15-20 до 55-60 км), который определяет верхний предел жизни в биосфере. Озон (О 3) образуется в результате фотохимических реакций наиболее интенсивно на высоте ~30 км. Общая масса О 3 составила бы при нормальном давлении слой толщиной 1,7-4,0 мм, но и этого достаточно для поглощения губительного для жизни ультрафиолетового излучения Солнца. Разрушение О 3 происходит при его взаимодействии со свободными радикалами, NO, галогенсодержащими соединениями (в т. ч. «фреонами»).

В стратосфере задерживается большая часть коротковолновой части ультрафиолетового излучения (180-200 нм) и происходит трансформация энергии коротких волн. Под влиянием этих лучей изменяются магнитные поля, распадаются молекулы, происходит ионизация, новообразование газов и других химических соединений. Эти процессы можно наблюдать в виде северных сияний, зарниц и других свечений.

В стратосфере и более высоких слоях под воздействием солнечной радиации молекулы газов диссоциируют - на атомы (выше 80 км диссоциируют СО 2 и Н 2 , выше 150 км - О 2 , выше 300 км - N 2). На высоте 200-500 км в ионосфере происходит также ионизация газов, на высоте 320 км концентрация заряженных частиц (О + 2 , О − 2 , N + 2) составляет ~ 1/300 от концентрации нейтральных частиц. В верхних слоях атмосферы присутствуют свободные радикалы - ОН , НО 2 и др.

В стратосфере почти нет водяного пара.

Полёты в стратосферу начались в 1930-годах. Широко известен полёт на первом стратостате (FNRS-1), который совершили Огюст Пикар и Пауль Кипфер 27 мая 1931 г. на высоту 16,2 км. Современные боевые и сверхзвуковые коммерческие самолёты летают в стратосфере на высотах в основном до 20 км (хотя динамический потолок может быть значительно выше). Высотные метеозонды поднимаются до 40 км; рекорд для беспилотного аэростата составляет 51,8 км.

В последнее время в военных кругах США большое внимание уделяют освоению слоёв стратосферы выше 20 км, часто называемых «предкосмосом» (англ. « near space » ). Предполагается, что беспилотные дирижабли и самолёты на солнечной энергии (наподобие NASA Pathfinder) смогут длительное время находиться на высоте порядка 30 км и обеспечивать наблюдением и связью очень большие территории, оставаясь при этом малоуязвимыми для средств ПВО; такие аппараты будут во много раз дешевле спутников.

Стратопа́уза - слой атмосферы, являющийся пограничным между двумя слоями, стратосферой и мезосферой. В стратосфере температура повышается с увеличением высоты, а стратопауза является слоем, где температура достигает максимума. Температура стратопаузы - около 0 °C.

Данное явление наблюдается не только на Земле, но и на других планетах, имеющих атмосферу.

На Земле стратопауза находится на высоте 50 - 55 км над уровнем моря. Атмосферное давление составляет около 1/1000 от давления на уровне моря.

Мезосфе́ра (от греч. μεσο- - «средний» и σφαῖρα - «шар», «сфера») - слой атмосферы на высотах от 40-50 до 80-90 км. Характеризуется повышением температуры с высотой; максимум (порядка +50°C) температуры расположен на высоте около 60 км, после чего температура начинает убывать до −70° или −80°C. Такое понижение температуры связано с энергичным поглощением солнечной радиации (излучения) озоном. Термин принят Географическим и геофизическим союзом в 1951 году.

Газовый состав мезосферы, как и расположенных ниже атмосферных слоев, постоянен и содержит около 80 % азота и 20 % кислорода.

Мезосфера отделяется от нижележащей стратосферы стратопаузой, а от вышележащей термосферы - мезопаузой. Мезопауза в основном совпадает с турбопаузой.

Метеоры начинают светиться и, как правило, полностью сгорают в мезосфере.

В мезосфере могут появляться серебристые облака.

Для полётов мезосфера представляет собой своего рода «мёртвую зону» - воздух здесь слишком разрежен, чтобы поддерживать самолёты или аэростаты (на высоте 50 км плотность воздуха в 1000 раз меньше, чем на уровне моря), и в то же время слишком плотен для полётов искусственных спутников на такой низкой орбите. Прямые исследования мезосферы проводятся в основном с помощью суборбитальных метеорологических ракет; в целом мезосфера изучена хуже других слоёв атмосферы, в связи с чем учёные прозвали её «игноросферой».

Мезопа́уза

Мезопа́уза - слой атмосферы, разделяющий мезосферу и термосферу. На Земле располагается на высоте 80-90 км над уровнем моря. В мезопаузе находится температурный минимум, который составляет около −100 °C. Ниже (начиная от высоты около 50 км) температура падает с высотой, выше (до высоты около 400 км) - снова растёт. Мезопауза совпадает с нижней границей области активного поглощения рентгеновского и наиболее коротковолнового ультрафиолетового излучения Солнца. На этой высоте наблюдаются серебристые облака.

Мезопауза есть не только на Земле, но и на других планетах, имеющих атмосферу.

Линия Ка́рмана - высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом.

В соответствии с определением Международной авиационной федерации (ФАИ), линия Кармана находится на высоте 100 км над уровнем моря.

Название высота получила по имени Теодора фон Кармана, американского учёного венгерского происхождения. Он первый определил, что примерно на этой высоте атмосфера становится настолько разрежённой, что аэронавтика становится невозможной, так как скорость летательного аппарата, необходимая для создания достаточной подъёмной силы, становится больше первой космической скорости, и поэтому для достижения бо́льших высот необходимо пользоваться средствамикосмонавтики.

Атмосфера Земли продолжается и за линией Кармана. Внешняя часть земной атмосферы, экзосфера, простирается до высоты 10 тыс. км и более, на такой высоте атмосфера состоит в основном из атомов водорода, способных покидать атмосферу.

Достижение Линии Кармана являлось первым условием для получения приза Ansari X Prize, так как это является основанием для признания полёта космическим.

Иногда атмосферу, толстым слоем окружающую нашу планету, называют пятым океаном. Недаром второе название самолета - воздушное судно. Атмосфера представляет собой смесь различных газов, среди которых преобладают азот и кислород. Именно благодаря последнему на планете возможна жизнь в той форме, к которой мы все привыкли. Кроме них, есть еще 1% других составляющих. Это инертные (не вступающие в химические взаимодействия) газы, оксид серы, Также в пятом океане содержатся механические примеси: пыль, пепел и пр. Все слои атмосферы в общей сложности простираются почти на 480 км от поверхности (данные различны, подробнее на этом моменте остановимся далее). Такая впечатляющая толщина образует своеобразный непробиваемый щит, защищающий планету от губительного космического излучения и крупных объектов.

Различают следующие слои атмосферы: тропосфера, за ней следует стратосфера, далее мезосфера и, наконец, термосфера. Приведенный порядок начинается у поверхности планеты. Плотные слои атмосферы представлены первыми двумя. Именно они отфильтровывают значительную часть губительного

Самый нижний слой атмосферы - тропосфера, простирается всего на 12 км над уровнем моря (18 км в тропиках). Здесь концентрируется до 90% водяного пара, поэтому облака формируются в нем. Большая часть воздуха также сосредоточена именно здесь. Все последующие слои атмосферы более холодные, так как близость к поверхности позволяет отраженным солнечным лучам нагревать воздух.

Стратосфера простирается почти до 50 км от поверхности. Большинство метеозондов «плавают» в этом слое. Также здесь могут летать некоторые виды самолетов. Одной из удивительных особенностей является температурный режим: в промежутке от 25 до 40 км начинается рост температуры воздуха. От -60 она поднимается почти до 1. Затем наблюдается небольшое снижение до нуля, которое сохраняется до высоты в 55 км. Верхняя граница - это печально известный

Далее почти до 90 км простирается мезосфера. Температура воздуха здесь резко падает. На каждые 100 метров подъема наблюдается снижение на 0,3 градуса. Иногда ее называют наиболее холодным участком атмосферы. Плотность воздуха низкая, однако ее вполне достаточно для создания сопротивления падающим метеорам.

Слои атмосферы в привычном понимании заканчиваются на высоте около 118 км. Здесь формируются знаменитые полярные сияния. Выше начинается область термосферы. Из-за рентгеновских и происходит ионизация тех немногих молекул воздуха, содержащихся в этой области. Данные процессы создают так называемую ионосферу (она часто включается в термосферу, поэтому отдельно не рассматривается).

Все, что находится выше 700 км, называется экзосферой. воздуха крайне незначительна, поэтому они свободно перемещаются, не испытывая сопротивления из-за соударений. Это позволяет отдельным из них накапливать энергию, соответствующую 160 градусам Цельсия, при том, что окружающая температура низка. Молекулы газов распределяются по объему экзосферы в соответствии со своей массой, поэтому наиболее тяжелые из них могут быть обнаружены только в нижней части слоя. Уменьшающееся с высотой притяжение планеты уже не в состоянии удерживать молекулы, поэтому космические высокоэнергетические частицы и излучение сообщают молекулам газов импульс, достаточный для того, чтобы покинуть атмосферу. Эта область является одной из наиболее продолжительных: считается, что атмосфера полностью переходит в космический вакуум на высотах, больших 2000 км (иногда даже фигурирует число 10000). Искусственные вращаются по орбитах еще в термосфере.

Все указанные числа являются ориентировочными, так как границы атмосферных слоев зависят от ряда факторов, например, от активности Солнца.

Атмосфера (от греч. atmos — пар и spharia — шар) — воздушная оболочка Земли, вращающаяся вместе с ней. Развитие атмосферы было тесно связано с геологическими и геохимическими процессами, протекающими на нашей планете, а также с деятельностью живых организмов.

Нижняя граница атмосферы совпадает с поверхностью Земли, так как воздух проникает в мельчайшие поры в почве и растворен даже в воде.

Верхняя граница на высоте 2000-3000 км постепенно переходит в космическое пространство.

Благодаря атмосфере, в которой содержится кислород, возможна жизнь на Земле. Атмосферный кислород используется в процессе дыхания человека, животными, растениями.

Если бы не было атмосферы, на Земле была бы такая же тишина, как на Луне. Ведь звук — это колебание частиц воздуха. Голубой цвет неба объясняется тем, что солнечные лучи, проходя сквозь атмосферу, как через линзу, разлагаются на составляющие цвета. При этом рассеиваются больше всего лучи голубого и синего цветов.

Атмосфера задерживает большую часть ультрафиолетового излучения Солнца, которое губительно действует на живые организмы. Также она удерживает у поверхности Земли тепло, не давая нашей планете охлаждаться.

Строение атмосферы

В атмосфере можно выделить несколько слоев, различающихся по и плотности (рис. 1).

Тропосфера

Тропосфера — самый нижний слой атмосферы, толщина которого над полюсами составляет 8-10 км, в умеренных широтах — 10-12 км, а над экватором — 16-18 км.

Рис. 1. Строение атмосферы Земли

Воздух в тропосфере нагревается от земной поверхности, т. е. от суши и воды. Поэтому температура воздуха в этом слое с высотой понижается в среднем на 0,6 °С на каждые 100 м. У верхней границы тропосферы она достигает -55 °С. При этом в районе экватора на верхней границе тропосферы температура воздуха составляет -70 °С, а в районе Северного полюса -65 °С.

В тропосфере сосредоточено около 80 % массы атмосферы, находится почти весь водяной пар, возникают грозы, бури, облака и осадки, а также происходит вертикальное (конвекция) и горизонтальное (ветер) перемещение воздуха.

Можно сказать, что погода в основном формируется в тропосфере.

Стратосфера

Стратосфера — слой атмосферы, расположенный над тропосферой на высоте от 8 до 50 км. Цвет неба в этом слое кажется фиолетовым, что объясняется разреженностью воздуха, из-за которой солнечные лучи почти не рассеиваются.

В стратосфере сосредоточено 20 % массы атмосферы. Воздух в этом слое разрежен, практически нет водяного пара, а потому почти не образуются облака и осадки. Однако в стратосфере наблюдаются устойчивые воздушные течения, скорость которых достигает 300 км/ч.

В этом слое сосредоточен озон (озоновый экран, озоносфера), слой, который поглощает ультрафиолетовые лучи, не пропуская их к Земле и тем самым защищая живые организмы на нашей планете. Благодаря озону температура воздуха на верхней границе стратосферы находится в пределах от -50 до 4-55 °С.

Между мезосферой и стратосферой расположена переходная зона — стратопауза.

Мезосфера

Мезосфера — слой атмосферы, расположенный на высоте 50-80 км. Плотность воздуха здесь в 200 раз меньше, чем у поверхности Земли. Цвет неба в мезосфере кажется черным, в течение дня видны звезды. Температура воздуха снижается до -75 (-90)°С.

На высоте 80 км начинается термосфера. Температура воздуха в этом слое резко повышается до высоты 250 м, а потом становится постоянной: на высоте 150 км она достигает 220-240 °С; на высоте 500-600 км превышает 1500 °С.

В мезосфере и термосфере под действием космических лучей молекулы газов распадаются на заряженные (ионизированные) частицы атомов, поэтому эта часть атмосферы получила название ионосфера — слой очень разреженного воздуха, расположенный на высоте от 50 до 1000 км, состоящий в основном из ионизированных атомов кислорода, молекул окиси азота и свободных электронов. Для этого слоя характерна высокая наэлектризован- ность, и от него, как от зеркала, отражаются длинные и средние радиоволны.

В ионосфере возникают полярные сияния — свечение разреженных газов под влиянием электрически заряженных летящих от Солнца частиц — и наблюдаются резкие колебания магнитного поля.

Экзосфера

Экзосфера — внешний слой атмосферы, расположенный выше 1000 км. Этот слой еще называют сферой рассеивания, так как частицы газов движутся здесь с большой скоростью и могут рассеиваться в космическое пространство.

Состав атмосферы

Атмосфера — это смесь газов, состоящая из азота (78,08 %), кислорода (20,95 %), углекислого газа (0,03 %), аргона (0,93 %), небольшого количества гелия, неона, ксенона, криптона (0,01 %), озона и других газов, но их содержание ничтожно (табл. 1). Современный состав воздуха Земли установился более сотни миллионов лет назад, однако резко возросшая производственная деятельность человека все же привела к его изменению. В настоящее время отмечается увеличение содержания СО 2 примерно на 10-12 %.

Входящие в состав атмосферы газы выполняют различные функциональные роли. Однако основное значение этих газов определяется прежде всего тем, что они очень сильно поглощают лучистую энергию и тем самым оказывают существенное влияние на температурный режим поверхности Земли и атмосферы.

Таблица 1. Химический состав сухого атмосферного воздуха у земной поверхности

Объемная концентрация. %

Молекулярная масса, ед.

Кислород

Углекислый газ

Закись азота

от 0 до 0,00001

Двуокись серы

от 0 до 0,000007 летом;

от 0 до 0,000002 зимой

От 0 ло 0,000002

46,0055/17,03061

Двуокись азога

Окись углерода

Азот, самый распространенный газ в атмосфере, химически мало активен.

Кислород , в отличие от азота, химически очень активный элемент. Специфическая функция кислорода — окисление органического вещества гетеротрофных организмов, горных пород и недоокисленных газов, выбрасываемых в атмосферу вулканами. Без кислорода не было бы разложения мертвого органического вещества.

Роль углекислого газа в атмосфере исключительно велика. Он поступает в атмосферу в результате процессов горения, дыхания живых организмов, гниения и представляет собой, прежде всего, основной строительный материал для создания органического вещества при фотосинтезе. Кроме этого, огромное значение имеет свойство углекислого газа пропускать коротковолновую солнечную радиацию и поглощать часть теплового длинноволнового излучения, что создаст так называемый парниковый эффект, о котором речь пойдет ниже.

Влияние на атмосферные процессы, особенно на тепловой режим стратосферы, оказывает и озон. Этот газ служит естественным поглотителем ультрафиолетового излучения Солнца, а поглощение солнечной радиации ведет к нагреванию воздуха. Средние месячные значения общего содержания озона в атмосфере изменяются в зависимости от широты местности и времени года в пределах 0,23-0,52 см (такова толщина слоя озона при наземных давлении и температуре). Наблюдается увеличение содержания озона от экватора к полюсам и годовой ход с минимумом осенью и максимумом весной.

Характерным свойством атмосферы можно назвать то, что содержание основных газов (азота, кислорода, аргона) с высотой изменяется незначительно: на высоте 65 км в атмосфере содержание азота — 86 %, кислорода — 19, аргона — 0,91, на высоте же 95 км — азота 77, кислорода — 21,3, аргона — 0,82 %. Постоянство состава атмосферного воздуха по вертикали и по горизонтали поддерживается его перемешиванием.

Кроме газов, в воздухе содержатся водяной пар и твердые частицы. Последние могут иметь как естественное, так и искусственное (антропогенное) происхождение. Это цветочная пыльца, крохотные кристаллики соли, дорожная пыль, аэрозольные примеси. Когда в окно проникают солнечные лучи, их можно увидеть невооруженным глазом.

Особенно много твердых частиц в воздухе городов и крупных промышленных центров, где к аэрозолям добавляются выбросы вредных газов, их примесей, образующихся при сжигании топлива.

Концентрация аэрозолей в атмосфере определяет прозрачность воздуха, что сказывается на солнечной радиации, достигающей поверхности Земли. Наиболее крупные аэрозоли — ядра конденсации (от лат.condensatio — уплотнение, сгущение) — способствуют превращению водяного пара в водяные капли.

Значение водяного пара определяется прежде всего тем, что он задерживает длинноволновое тепловое излучение земной поверхности; представляет основное звено больших и малых круговоротов влаги; повышает температуру воздуха при конденсации водяных наров.

Количество водяного пара в атмосфере изменяется во времени и пространстве. Так, концентрация водяного пара у земной поверхности колеблется от 3 % в тропиках до 2-10 (15) % в Антарктиде.

Среднее содержание водяного пара в вертикальном столбе атмосферы в умеренных широтах составляет около 1,6-1,7 см (такую толщину будет иметь слой сконденсированного водяного пара). Сведения относительно водяного пара в различных слоях атмосферы противоречивы. Предполагалось, например, что в диапазоне высот от 20 до 30 км удельная влажность сильно увеличивается с высотой. Однако последующие измерения указывают на большую сухость стратосферы. По-видимому, удельная влажность в стратосфере мало зависит от высоты и составляет 2-4 мг/кг.

Изменчивость содержания водяного пара в тропосфере определяется взаимодействием процессов испарения, конденсации и горизонтального переноса. В результате конденсации водяного пара образуются облака и выпадают атмосферные осадки в виде дождя, града и снега.

Процессы фазовых переходов воды протекают преимущественно в тропосфере, именно поэтому облака в стратосфере (на высотах 20-30 км) и мезосфере (вблизи мезопаузы), получившие название перламутровых и серебристых, наблюдаются сравнительно редко, тогда как тропосферные облака нередко закрывают около 50 % всей земной поверхности.

Количество водяного пара, которое может содержаться в воздухе, зависит от температуры воздуха.

В 1 м 3 воздуха при температуре -20 °С может содержаться не более 1 г воды; при 0 °С — не более 5 г; при +10 °С — не более 9 г; при +30 °С — не более 30 г воды.

Вывод: чем выше температура воздуха, тем больше водяного пара может в нем содержаться.

Воздух может быть насыщенным и не насыщенным водяным паром. Так, если при температуре +30 °С в 1 м 3 воздуха содержится 15 г водяного пара, воздух не насыщен водяным паром; если же 30 г — насыщен.

Абсолютная влажность — это количество водяного пара, содержащегося в 1 м 3 воздуха. Оно выражается в граммах. Например, если говорят «абсолютная влажность равна 15», то это значит, что в 1 м Л содержится 15 г водяного пара.

Относительная влажность воздуха — это отношение (в процентах) фактического содержания водяного пара в 1 м 3 воздуха к тому количеству водяного пара, которое может содержаться в 1 м Л при данной температуре. Например, если по радио во время передачи сводки погоды сообщили, что относительная влажность равна 70 %, это значит, что воздух содержит 70 % того водяного пара, которое он может вместить при данной температуре.

Чем больше относительная влажность воздуха, т. с. чем ближе воздух к состоянию насыщения, тем вероятнее выпадение осадков.

Всегда высокая (до 90 %) относительная влажность воздуха наблюдается в экваториальной зоне, так как там в течение всего года держится высокая температура воздуха и происходит большое испарение с поверхности океанов. Такая же высокая относительная влажность и в полярных районах, но уже потому, что при низких температурах даже небольшое количество водяного пара делает воздух насыщенным или близким к насыщению. В умеренных широтах относительная влажность меняется по сезонам — зимой она выше, летом — ниже.

Особенно низкая относительная влажность воздуха в пустынях: 1 м 1 воздуха там содержит в два-три раза меньше возможного при данной температуре количество водяного пара.

Для измерения относительной влажности пользуются гигрометром (от греч. hygros — влажный и metreco — измеряю).

При охлаждении насыщенный воздух не может удержать в себе прежнего количества водяного пара, он сгущается (конденсируется), превращаясь в капельки тумана. Туман можно наблюдать летом в ясную прохладную ночь.

Облака — это тог же туман, только образуется он не у земной поверхности, а на некоторой высоте. Поднимаясь вверх, воздух охлаждается, и находящийся в нем водяной пар конденсируется. Образовавшиеся мельчайшие капельки воды и составляют облака.

В образовании облаков участвуют и твердые частицы , находящиеся в тропосфере во взвешенном состоянии.

Облака могут иметь различную форму, которая зависит от условий их образования (табл. 14).

Самые низкие и тяжелые облака — слоистые. Они располагаются на высоте 2 км от земной поверхности. На высоте от 2 до8 км можно наблюдать более живописные кучевые облака. Самые высокие и легкие — перистые облака. Они располагаются на высоте от 8 до 18 км над земной поверхностью.

Семейства

Роды облаков

Внешний облик

А. Облака верхнего яруса — выше 6 км

I. Перистые

Нитевидные, волокнистые, белые

II. Перисто-кучевые

Слои и гряды из мелких хлопьев и завитков, белые

III. Перисто-слоистые

Прозрачная белесая вуаль

Б. Облака среднего яруса — выше 2 км

IV. Высококучевые

Пласты и гряды белого и серою цвета

V. Высокослоистые

Ровная пелена молочно-серого цвета

В. Облака нижнего яруса — до 2 км

VI. Слоисто-дождевые

Сплошной бесформенный серый слой

VII. Слоисто-кучевые

Непросвечиваемые слои и гряды серого цвета

VIII. Слоистые

Непросвечиваемая пелена серого цвета

Г. Облака вертикального развития — от нижнего до верхнего яруса

IX. Кучевые

Клубы и купола ярко-бе- лого цвета, при ветре с разорванными краями

X. Кучево-дождевые

Мощные кучевообразные массы темно-свинцового цвета

Охрана атмосферы

Главным источником являются промышленные предприятия и автомобили. В больших городах проблема загазованности главных транспортных магистралей стоит очень остро. Именно поэтому во многих крупных городах мира, в том числе и в нашей стране, введен экологический контроль токсичности выхлопных газов автомобилей. Поданным специалистов, задымленность и запыленность воздуха может наполовину сократить поступление солнечной энергии к земной поверхности, что приведет к изменению природных условий.

Атмосфера - это то, что обеспечивает возможность жизни на Земле. Самые первые сведения и факты об атмосфере мы получаем ещё в начальной школе. В старших классах мы уже подробнее знакомимся с этим понятием на уроках географии.

Понятие земной атмосферы

Атмосфера имеется не только у Земли, но и у других небесных тел. Так называют газовую оболочку, окружающую планеты. Состав этого газового слоя разных планет значительно отличается. Давайте рассмотрим основные сведения и факты об иначе называемой воздухом.

Самой важной её составляющей частью является кислород. Некоторые ошибочно думают, что земная атмосфера состоит полностью из кислорода, но на самом деле воздух - это смесь газов. В его составе 78% азота и 21% кислорода. Остальной один процент включает в себя озон, аргон, углекислый газ, водяные пары. Пусть процентное соотношение этих газов мало, но они выполняют важную функцию - поглощают значительную часть солнечной лучистой энергии, тем самым не дают светилу превратить всё живое на нашей планете в пепел. Свойства атмосферы изменяются в зависимости от высоты. Например, на высоте 65 км азот составляет 86%, а кислород - 19%.

Состав атмосферы Земли

  • Углекислый газ необходим для питания растений. В атмосфере он появляется в результате процесса дыхания живых организмов, гниения, горения. Отсутствие его в составе атмосферы сделало бы невозможным существование любых растений.
  • Кислород - жизненно важный для человека компонент атмосферы. Его наличие является условием для существования всех живых организмов. Он составляет около 20% от общего объёма атмосферных газов.
  • Озон - это естественный поглотитель солнечного ультрафиолетового излучения, которое пагубно влияет на живые организмы. Большая его часть формирует отдельный слой атмосферы - озоновый экран. В последнее время деятельность человека приводит к тому, что начинает постепенно разрушаться, но так как он имеет большую важность, то ведётся активная работа по его сохранению и восстановлению.
  • Водяной пар определяет влажность воздуха. Его содержание может быть разным в зависимости от различных факторов: температуры воздуха, территориального расположения, сезона. При низкой температуре водяного пара в воздухе совсем мало, может быть меньше одного процента, а при высокой его количество достигает 4%.
  • Кроме всего вышеперечисленного, в составе земной атмосферы всегда присутствует определённый процент твёрдых и жидких примесей . Это сажа, пепел, морская соль, пыль, капли воды, микроорганизмы. Попадать в воздух они могут как естественным, так и антропогенным путём.

Слои атмосферы

И температура, и плотность, и качественный состав воздуха неодинаковый на разной высоте. Из-за этого принято выделять разные слои атмосферы. Каждый из них имеет свою характеристику. Давайте узнаем, какие слои атмосферы различают:

  • Тропосфера - этот слой атмосферы находится ближе всего к поверхности Земли. Высота его - 8-10 км над полюсами и 16-18 км - в тропиках. Здесь находится 90% всего водяного пара, который имеется в атмосфере, поэтому происходит активное образование облаков. Также в этом слое наблюдаются такие процессы, как движение воздуха (ветра), турбулентность, конвекция. Температура колеблется от +45 градусов в полдень в тёплое время года в тропиках до -65 градусов на полюсах.
  • Стратосфера - второй по отдалённости от слой атмосферы. Находится на высоте от 11 до 50 км. В нижнем слое стратосферы температура приблизительно -55, в сторону удаления от Земли она повышается до +1˚С. Эта область называется инверсией и является границей стратосферы и мезосферы.
  • Мезосфера располагается на высоте от 50 до 90 км. Температура на её нижней границе - около 0, на верхней достигает -80...-90 ˚С. Метеориты, попадающие в атмосферу Земли, полностью сгорают в мезосфере, из-за этого здесь происходят свечения воздуха.
  • Термосфера имеет толщину приблизительно 700 км. В этом слое атмосферы возникают северные сияния. Появляются они за счёт под действием космического излучения и радиации, исходящей от Солнца.
  • Экзосфера - это зона рассеивания воздуха. Здесь концентрация газов небольшая и происходит их постепенный уход в межпланетное пространство.

Границей между земной атмосферой и космическими просторами принято считать рубеж в 100 км. Эту черту называют линией Кармана.

Давление атмосферы

Слушая прогноз погоды, мы часто слышим показатели атмосферного давления. Но что означает давление атмосферы, и как на нас это может повлиять?

Мы разобрались, что воздух состоит из газов и примесей. Каждая из этих составляющих имеет свой вес, а значит, и атмосфера не невесома, как считали до XVII века. Атмосферное давление - это сила, с которой все слои атмосферы давят на поверхность Земли и на все предметы.

Учёные провели сложные подсчёты и доказали, что на один квадратный метр площади атмосфера давит с силой 10 333 кг. Значит, человеческое тело подвержено давлению воздуха, вес которого равен 12-15 тонн. Почему же мы не ощущаем этого? Спасает нас своё внутреннее давление, которое и уравновешивает внешнее. Можно ощутить давление атмосферы, находясь в самолёте или высоко в горах, так как атмосферное давление на высоте значительно меньше. При этом возможен физический дискомфорт, закладывание ушей, головокружение.

Об атмосфере, окружающей можно сказать много всего. Мы знаем о ней множество интересных фактов, и некоторые из них могут казаться удивительными:

  • Вес земной атмосферы составляет 5 300 000 000 000 000 тонн.
  • Она способствует передаче звука. На высоте больше 100 км это свойство исчезает из-за изменения состава атмосферы.
  • Движение атмосферы спровоцировано неравномерным нагревом поверхности Земли.
  • Для определения температуры воздуха используют термометр, а для того, чтобы узнать силу давления атмосферы, - барометр.
  • Наличие атмосферы спасает нашу планету от 100 тонн метеоритов ежедневно.
  • Состав воздуха был фиксированным несколько сотен миллионов лет, но стал изменяться с началом бурной производственной деятельности.
  • Считается, что атмосфера простирается вверх на высоту 3000 км.

Значение атмосферы для человека

Физиологическая зона атмосферы составляет 5 км. На высоте 5000 м над уровнем моря у человека начинает проявляться кислородное голодание, что выражается в снижении его работоспособности и ухудшении самочувствия. Это показывает то, что человек не сможет выжить в пространстве, где нет этой удивительной смеси газов.

Все сведения и факты об атмосфере только подтверждают её важность для людей. Благодаря её наличию и появилась возможность развития жизни на Земле. Уже сегодня, оценив масштабы вреда, который человечество способно своими действиями наносить дающему жизнь воздуху, нам следует задуматься о дальнейших мерах сохранения и восстановления атмосферы.

Изменявшие земную поверхность. Не меньшее значение имела деятельность ветра , переносившего мелкие фракции горных пород на большие расстояния. Существенно влияли на разрушение горных пород колебания температуры и другие атмосферные факторы. Наряду с этим А. защищает поверхность Земли от разрушительного действия падающих метеоритов , большая часть которых сгорает при вхождении в плотные слои атмосферы.

Деятельность живых организмов, оказавшая сильное влияние на развитие А. сама в очень большой степени зависит от атмосферных условий. А. задерживает большую часть ультрафиолетового излучения Солнца , которое губительно действует на многие организмы. Атмосферный кислород используется в процессе дыхания животными и растениями , атмосферная углекислота - в процессе питания растений. Климатические факторы, в особенности термический режим и режим увлажнения, влияют на состояние здоровья и на деятельность человека . Особенно сильно зависит от климатических условий сельское хозяйство . В свою очередь, деятельность человека оказывает всё возрастающее влияние на состав А. и на климатический режим.

Строение атмосферы

Вертикальное распределение температуры в атмосфере и связанная с этим терминология.

Многочисленные наблюдения показывают, что А. имеет четко выраженное слоистое строение (см. рис.). Основные черты слоистой структуры А. определяются в первую очередь особенностями вертикального распределения температуры . В самой нижней части А. - тропосфере , где наблюдается интенсивное турбулентное перемешивание (см. Турбулентность в атмосфере и гидросфере), температура убывает с увеличением высоты, причём уменьшение температуры по вертикали составляет в среднем 6° на 1 км. Высота тропосферы изменяется от 8-10 км в полярных широтах до 16-18 км у экватора. В связи с тем, что плотность воздуха быстро убывает с высотой, в тропосфере сосредоточено около 80% всей массы А. Над тропосферой расположен переходный слой - тропопауза с температурой 190-220 , выше которой начинается стратосфера. В нижней части стратосферы уменьшение температуры с высотой прекращается, и температура остаётся приблизительно постоянной до высоты 25 км - т. н. изотермическая область (нижняя стратосфера); выше температура начинает возрастать - область инверсии (верхняя стратосфера). Температура достигает максимума ~ 270 K на уровне стратопаузы , расположенной на высоте около 55 км. Слой А., находящийся на высотах от 55 до 80 км, где вновь происходит понижение температуры с высотой, получил название мезосферы . Над ней находится переходный слой - мезопауза , выше которой располагается термосфера , где температура, увеличиваясь с высотой, достигает очень больших значений (св. 1000 K). Ещё выше (на высотах ~ 1000 км и более) находится экзосфера , откуда атмосферные газы рассеиваются в мировое пространство за счёт диссипации и где происходит постепенный переход от А. к межпланетному пространству . Обычно все слои А., находящиеся выше тропосферы, называются верхними, хотя иногда к нижним слоям А. относят также стратосферу или её нижняя часть.

Все структурные параметры А. (температура, давление, плотность) обладают значительной пространственно-временной изменчивостью (широтной, годовой, сезонной, суточной и др.). Поэтому данные рис. отражают лишь среднее состояние атмосферы.

Схема строения атмосферы:
1 - уровень моря ; 2 - высшая точка Земли - г. Джомолунгма (Эверест), 8848 м; 3 - кучевые облака хорошей погоды; 4 - мощно-кучевые облака; 5 - ливневые (грозовые) облака; 6 - слоисто-дождевые облака; 7 - перистые облака; 8 - самолёт ; 9 - слой максимальной концентрации озона ; 10 - перламутровые облака ; 11 - стратостат ; 12 - радиозонд ; 1З - метеоры ; 14 - серебристые облака ; 15 - полярные сияния ; 16 - американский самолёт-ракета Х-15; 17, 18, 19 - радиоволны, отражающиеся от ионизованных слоев и возвращающиеся на Землю; 20 - звуковая волна, отражающаяся от тёплого слоя и возвращающаяся на Землю; 21 - первый советский искусственный спутник Земли; 22 - межконтинентальная баллистическая ракета ; 23 - геофизические исследовательские ракеты; 24 - метеорологические спутники; 25 - космические корабли «Союз-4» и «Союз-5»; 26 - космические ракеты, уходящие за пределы атмосферы, а также радиоволна, пронизывающая ионизованные слои и уходящая из атмосферы; 27, 28 - диссипация (ускальзывание) атомов Н и Не; 29 - траектория солнечных протонов Р; 30 - проникновение ультрафиолетовых лучей (длина волны l > 2000 и l < 900).

Слоистая структура атмосферы имеет и много других разнообразных проявлений. Неоднороден по высоте химический состав А. Если на высотах до 90 км, где существует интенсивное перемешивание А., относительный состав постоянных компонент атмосферы остаётся практически неизменным (вся эта толща А. получила название гомосферы), то выше 90 км - в гетеросфере - под влиянием диссоциации молекул атмосферных газов ультрафиолетовым излучением Солнца происходит сильное изменение химического состава А. с высотой. Типичные черты этой части А. - слои озона и собственное свечение атмосферы. Сложная слоистая структура характерна для атмосферного аэрозоля - взвешенных в А. твёрдых частиц земного и космического происхождения. Наиболее часто встречаются аэрозольные слои под тропопаузой и на высоте около 20 км. Слоистым является вертикальное распределение электронов и ионов в А., что выражается в существовании D-, Е- и F-cлоёв ионосферы .

Состав атмосферы

Одна из наиболее оптически активных компонент - атмосферная аэрозоль - взвешенные в воздухе частицы размером от нескольких нм до нескольких десятков мкм, образующиеся при конденсации водяного пара и попадающие в А. с земной поверхности в результате индустриальных загрязнений, вулканических извержений, а также из космоса . Аэрозоль наблюдается как в тропосфере, так и в верхних слоях А. Концентрация аэрозоля быстро убывает с высотой, но на этот ход налагаются многочисленные вторичные максимумы, связанные с существованием аэрозольных слоев.

Верхние слои атмосферы

Выше 20-30 км молекулы А. в результате диссоциации в той или иной степени распадаются на атомы и в А. появляются свободные атомы и новые более сложные молекулы. Несколько выше становятся существенными ионизационные процессы.

Наиболее неустойчива область гетеросферы , где процессы ионизации и диссоциации порождают многочисленные фотохимические реакции, определяющие изменение состава воздуха с высотой. Здесь происходит также и гравитационное разделение газов, выражающееся в постепенном обогащении А. более лёгкими газами по мере увеличения высоты. По данным ракетных измерений, гравитационное разделение нейтральных газов - аргона и азота - наблюдается выше 105-110 км . Основные компоненты А. в слое 100-210 км - молекулярный азот, молекулярный кислород и атомарный кислород (концентрация последнего на уровне 210 км достигает 77 ± 20% от концентрации молекулярного азота).

Верхняя часть термосферы состоит главным образом из атомарного кислорода и азота. На высоте 500 км молекулярный кислород практически отсутствует, но молекулярный азот, относительная концентрация которого сильно уменьшается, всё ещё доминирует над атомарным.

В термосфере важную роль играют приливные движения (см. Приливы и отливы), гравитационные волны, фотохимические процессы, увеличение длины свободного пробега частиц, а также другие факторы. Результаты наблюдений торможения спутников на высотах 200-700 км привели к выводу о наличии взаимосвязи между плотностью, температурой и солнечной активностью , с которой связано существование суточного, полугодового и годового хода структурных параметров. Возможно, что суточные вариации в значительной степени обусловлены атмосферными приливами. В периоды солнечных вспышек температура на высоте 200 км в низких широтах может достигать 1700-1900°C.

Выше 600 км преобладающей компонентой становится гелий , а ещё выше, на высотах 2-20 тыс. км, простирается водородная корона Земли. На этих высотах Земля окружена оболочкой из заряженных частиц, температура которых достигает нескольких десятков тысяч градусов. Здесь располагаются внутренний и внешний радиационные пояса Земли . Внутренний пояс, заполненный главным образом протонами с энергией в сотни Мэв, ограничен высотами 500-1600 км на широтах от экватора до 35-40°. Внешний пояс состоит из электронов с энергиями порядка сотен кэв. За внешним поясом существует «самый внешний пояс», в котором концентрация и потоки электронов значительно выше. Вторжение солнечного корпускулярного излучения (солнечного ветра) в верхние слои А. порождает полярные сияния. Под влиянием этой бомбардировки верхней А. электронами и протонами солнечной короны возбуждается также собственное свечение атмосферы, которое раньше называлось свечением ночного неба . При взаимодействии солнечного ветра с магнитным полем Земли создаётся зона, получившая назв. магнитосферы Земли , куда не проникают потоки солнечной плазмы .

Для верхних слоев А. характерно существование сильных ветров, скорость которых достигает 100-200 м/сек. Скорость и направление ветра в пределах тропосферы, мезосферы и нижней термосферы обладают большой пространственно-временной изменчивостью. Хотя масса верхних слоев А. незначительна по сравнению с массой нижних слоев и энергия атмосферных процессов в высоких слоях сравнительно невелика, по-видимому, существует некоторое влияние высоких слоев А. на погоду и климат в тропосфере.

Радиационный, тепловой и водный балансы атмосферы

Практически единственным источником энергии для всех физических процессов, развивающихся в А., является солнечная радиация. Главная особенность радиационного режима А. - т. н. парниковый эффект: А. слабо поглощает коротковолновую солнечную радиацию (большая её часть достигает земной поверхности), но задерживает длинноволновое (целиком инфракрасное) тепловое излучение земной поверхности, что значительно уменьшает теплоотдачу Земли в космическое пространство и повышает её температуру.

Приходящая в А. солнечная радиация частично поглощается в А. главным образом водяным паром, углекислым газом, озоном и аэрозолями и рассеивается на частицах аэрозоля и на флуктуациях плотности А. Вследствие рассеяния лучистой энергии Солнца в А. наблюдается не только прямая солнечная, но и рассеянная радиация, в совокупности они составляют суммарную радиацию. Достигая земной поверхности, суммарная радиация частично отражается от неё. Величина отражённой радиации определяется отражательной способностью подстилающей поверхности, т. н. альбедо . За счёт поглощённой радиации земная поверхность нагревается и становится источником собственного длинноволнового излучения, направленного к А. В свою очередь, А. также излучает длинноволновую радиацию, направленную к земной поверхности (т. н. противоизлучение А.) ив мировое пространство (т. н. уходящее излучение). Рациональный теплообмен между земной поверхностью и А. определяется эффективным излучением - разностью между собственным излучением поверхности Земли и поглощённым ею противоизлучением А. Разность между коротковолновой радиацией, поглощённой земной поверхностью, и эффективным излучением называется радиационным балансом .

Преобразования энергии солнечной радиации после её поглощения на земной поверхности и в А. составляют тепловой баланс Земли. Главный источник тепла для атмосферы - земная поверхность, поглощающая основную долю солнечной радиации. Поскольку поглощение солнечной радиации в А. меньше потери тепла из А. в мировое пространство длинноволновым излучением, то радиационный расход тепла восполняется притоком тепла к А. от земной поверхности в форме турбулентного теплообмена и приходом тепла в результате конденсации водяного пара в А. Так как итоговая величина конденсации во всей А. равна количеству выпадающих осадков, а также величине испарения с земной поверхности, приход конденсационного тепла в А. численно равен затрате тепла на испарение на поверхности Земли (см. также Водный баланс).

Некоторая часть энергии солнечной радиации затрачивается на поддержание общей циркуляции А. и на другие атмосферные процессы, однако эта часть незначительна по сравнению с основными составляющими теплового баланса.

Движение воздуха

Вследствие большой подвижности атмосферного воздуха на всех высотах А. наблюдаются ветры. Движения воздуха зависят от многих факторов, из которых главный - неравномерность нагрева А. в разных районах земного шара.

Особенно большие контрасты температуры у поверхности Земли существуют между экватором и полюсами из-за различия прихода солнечной энергии на разных широтах. Наряду с этим на распределение температуры влияет расположение континентов и океанов. Из-за высоких теплоёмкости и теплопроводности океанических вод океаны значительно ослабляют колебания температуры, которые возникают в результате изменений прихода солнечной радиации в течение года . В связи с этим в умеренных и высоких широтах температура воздуха над океанами летом заметно ниже, чем над континентами, а зимой - выше.

Неравномерность нагревания атмосферы способствует развитию системы крупномасштабных воздушных течений - т. н. общей циркуляции атмосферы , которая создаёт горизонтальный перенос тепла в А., в результате чего различия в нагревании атмосферного воздуха в отдельных районах заметно сглаживаются. Наряду с этим общая циркуляция осуществляет влагооборот в А., в ходе которого водяной пар переносится с океанов на сушу и происходит увлажнение континентов. Движение воздуха в системе общей циркуляции тесно связано с распределением атмосферного давления и зависит также от вращения Земли (см. Кориолиса сила). На уровне моря распределение давления характеризуется его понижением у экватора, увеличением в субтропиках (пояса высокого давления) и понижением в умеренных и высоких широтах. При этом над материками внетропических широт давление зимой обычно повышено, а летом понижено.

С планетарным распределением давления связана сложная система воздушных течений, некоторые из них сравнительно устойчивы, а другие постоянно изменяются в пространстве и во времени. К устойчивым воздушным течениям относятся пассаты, которые направлены от субтропических широт обоих полушарий к экватору. Сравнительно устойчивы также муссоны - воздушные течения, возникающие между океаном и материком и имеющие сезонный характер. В умеренных широтах преобладают воздушные течения западных направления (с З. на В.). Эти течения включают крупные вихри - циклоны и антициклоны , обычно простирающиеся на сотни и тысячи км. Циклоны наблюдаются и в тропических широтах, где они отличаются меньшими размерами, но особенно большими скоростями ветра, часто достигающими силы урагана (т. н. тропические циклоны). В верхней тропосфере и нижней стратосфере встречаются сравнительно узкие (в сотни км шириной) струйные течения , имеющие резко очерченные границы, в пределах которых ветер достигает громадных скоростей - до 100-150 м/сек. Наблюдения показывают, что особенности атмосферные циркуляции в нижней части стратосферы определяются процессами в тропосфере.

В верхней половине стратосферы, где наблюдается рост температуры с высотой, скорость ветра возрастает с высотой, причём летом доминируют ветры восточных направлений, а зимой - западных. Циркуляция здесь определяется стратосферным источником тепла, существование которого связано с интенсивным поглощением озоном ультрафиолетовой солнечной радиации.

В нижней части мезосферы в умеренных широтах скорость зимнего западного переноса возрастает до максимальных значений - около 80 м/сек, а летнего восточного переноса - до 60 м/сек на уровне порядка 70 км. Исследования последних лет ясно показали, что особенности поля температуры в мезосфере нельзя объяснить только влиянием радиационных факторов. Главное значение имеют динамические факторы (в частности, разогревание или охлаждение при опускании или подъёме воздуха), а также возможны источники тепла, возникающие в результате фотохимических реакций (например, рекомбинации атомарного кислорода).

Над холодным слоем мезопаузы (в термосфере) температура воздуха начинает быстро возрастать с высотой. Во многих отношениях эта область А. подобна нижней половине стратосферы. Вероятно, циркуляция в нижней части термосферы определяется процессами в мезосфере, а динамика верхних слоев термосферы обусловлена поглощением здесь солнечной радиации. Однако исследовать атмосферного движения на этих высотах трудно вследствие их значительной сложности. Большое значение приобретают в термосфере приливные движения (главным образом солнечные полусуточные и суточные приливы), под влиянием которых скорость ветра на высотах более 80 км может достигать 100-120 м/сек. Характерная черта атмосферных приливов - их сильная изменчивость в зависимости от широты, времени года, высоты над уровнем моря и времени суток. В термосфере наблюдаются также значительные изменения скорости ветра с высотой (главным образом вблизи уровня 100 км), приписываемые влиянию гравитационных волн. Расположенная в диапазоне высот 100-110 км т. н. турбопауза резко отделяет находящуюся выше область от зоны интенсивного турбулентного перемешивания.

Наряду с воздушными течениями больших масштабов, в нижних слоях атмосферы наблюдаются многочисленные местные циркуляции воздуха (бриз , бора , горно-долинные ветры и др.; см. Ветры местные). Во всех воздушных течениях обычно отмечаются пульсации ветра, соответствующие перемещению воздушных вихрей средних и малых размеров. Такие пульсации связаны с турбулентностью атмосферы, которая существенно влияет на многие атмосферные процессы.

Климат и погода

Различия в количестве солнечной радиации, приходящей на разные широты земной поверхности, и сложность её строения, включая распределение океанов, континентов и крупнейших горных систем, определяют разнообразие климатов Земли (см. Климат).

Литература

  • Метеорология и гидрология за 50 лет Советской власти, под ред. Е. К. Федорова, Л., 1967;
  • Хргиан А. Х., Физика атмосферы, 2 изд., М., 1958;
  • Зверев А. С., Синоптическая метеорология и основы предвычисления погоды, Л., 1968;
  • Хромов С. П., Метеорология и климатология для географических факультетов, Л., 1964;
  • Тверской П. Н., Курс метеорологии, Л., 1962;
  • Матвеев Л. Т., Основы общей метеорологии. Физика атмосферы, Л., 1965;
  • Будыко М. И., Тепловой баланс земной поверхности, Л., 1956;
  • Кондратьев К. Я., Актинометрия , Л., 1965;
  • Хвостиков И. А., Высокие слои атмосферы, Л., 1964;
  • Мороз В. И., Физика планет, М., 1967;
  • Тверской П. Н., Атмосферное электричество, Л., 1949;
  • Шишкин Н. С., Облака, осадки и грозовое электричество, М., 1964;
  • Озон в земной атмосфере, под ред. Г. П. Гущина, Л., 1966;
  • Имянитов И. М., Чубарина Е. В., Электричество свободной атмосферы, Л., 1965.

М. И. Будыко, К. Я. Кондратьев.

Эта статья или раздел использует текст