Четверть мировых запасов ртути страна. Из чего и как добывают и перерабатывают ртуть

Периодических элементов, подгруппа цинка, атомный номер – 80. В комнатных условиях, вещество представляется тяжёлой бело-серебристой жидкостью. Пары ртути ядовиты. Температура ртути определяет её агрегатное состояние, не один металл кроме неё, не имеет жидкую структуру в условиях комнатной температуры.

Плавление ртути начинается при температуре 234º К, кипение при 629º К. Сплавляется со многими металлами, образуя сплавы, называемые амальгамами. Ртуть в воде и кислотных растворах не растворяется, сделать это может только азотная кислота или .

С трудом это можно сделать с помощью серной кислоты. При достижении температуры 300º С, происходит реакция с кислородом, результатом которой является оксид ртути , имеющий красный цвет (не путать с вымышленной “красной ртутью”!).

«Красная ртуть» – данный термин обозначает вещество, вымышленное в коммерческих целях. Свойству приписываются запредельные свойства, на деле науке пока не известен подобный металл, ни природного, ни искусственного происхождения. Соединение серы и ртути при высокой температуре образует сульфид ртути.

Добыча и происхождение ртути

Данный металл считается довольно редким, концентрируется, в основном, в специфичных ртутных рудах, количество ртути в которых довольно высокое. По большому счёту весь объём природной ртути рассеян в природе, и лишь малая его часть заключена в рудах. Наиболее высокий процент содержания наблюдается в породах образовавшихся после извержения и осадочных сланцах.

Сульфидные минералы по большей части также содержат ртуть. Это блёклые руды, сфалериаты, реальгары и антимониты. В природе часто обнаруживаются связки сопутствующих друг другу элементов, например такое соседство как селен, сера и ртуть .

Доподлинно известно не менее двадцати видов ртутных минералов. Основным добываемым минералом является киноварь, реже – метациннабарит или самородная ртуть. На месторождении в Мексике (Гуитцуко) добывается ливингстонит.

Наиболее крупные месторождения находятся в Дагестане, Таджикистане, Армении, Киргизии, Украине, Испании и Словении (месторождение в г. Идрия, считается крупнейшим, ещё со средневековья). В России находится также не менее двадцати трёх месторождений.

Применение ртути

Раньше определённое соединение ртути , например её хлорид или меркузал, запросто мог найти применение в медицинской области. Это были различные медикаменты слабительного, мочегонного и антисептического действия. Но сейчас ртутные соединения почти полностью вытеснены из этой области, в виду своей токсичности. Частично этот элемент применяется при производстве термометров, хотя и для них уже нашёлся более безопасный заменитель.

Более приемлемым считается её присутствие в технических устройствах. Это высокоточные термометры технического назначения. Лампы люминесцентного света, где используются её пары. Выпрямительные устройства, электроприводы, и даже некоторые модели сварочных аппаратов. Это датчики положения и герметичные выключатели.

Также её используют при изготовлении некоторых видов источников тока, с ртутно-цинковой начинкой. Одним из компонентов гидродинамических подшипников также является ртуть. Также в технической промышленности нашли своё применение такие соединения как фульминат, иодид и бромид ртути. Положительные свойства показали её с цезием, используемые при производстве ионных двигателей.

В металлургии ртуть применяется при выплавке множества различных сплавов, и при вторичном процессе переработки алюминия. Нашла свою нишу она и в ювелирном производстве, а также при изготовлении зеркал. Немалое распространение ртуть получила при получении золота, ей предварительно обрабатываются золотосодержащие породы, для его извлечения из них. В сельской промышленности некоторые ртутные соединения применяются для обработки посевного материала и в как пестицид. Хотя это крайне не желательно.

Вред ртути для организма человека

Пары ртути чрезвычайно опасны. Попасть в организма она может через испарения или непосредственно через ротовую полость. Последнее обычно происходит с маленькими детьми, в случае если разбилась ртуть из термометра. При этом необходимо как можно скорее вызвать у него рвоту, и вызвать неотложную помощь.

А вот надышаться её парами может каждый, если ртуть из градусника раскатилась по всем щелям комнаты, и оттуда испаряется. Отравление ртутью происходит постепенно, на начальных стадиях особых симптомов не наблюдается. В дальнейшем проявляются чрезмерная раздражительность, постоянная тошнота, происходит потеря веса. В первую очередь удар приходится на центральную нервную систему и почки.

Каких мер предосторожности требует ртуть? Разбили градусник? Что делать и как собрать ртуть с пола, укажет следующая инструкция. Немедленно проветрить помещение, не менее нескольких часов. Но не допускать прямого сквозняка, пока ртуть не собрано полностью. Ограничить доступ к месту происшествия, чтобы не разнести ртуть по всему дому.

Перед тем как начать собирать ртуть, необходимо на руки надеть перчатки из непроницаемого материала, на ноги – любые пакеты, на лицо – повязку, пропитанную водой или раствором. Тщательно собрать всю раскатившуюся ртуть, и остатки разбившегося градусника в ёмкость с водой, это не даст ртути испаряться. Необходимо собрать ртуть как можно тщательней, например, с помощью шприца.

Если ртуть попала под плинтус или пол, не ленясь его вскрыть и вычистить её оттуда, сколько времени бы это не заняло. Если процедура занимает достаточно времени, следует делать перерывы каждые десять минут. Ёмкость необходимо плотно закупорить, и держать её вдали от тепла. Выкидывать ёмкость категорически запрещено. Это загрязнит окружающую среду, её могут найти дети. Поэтому собранная ртуть сдаётся в соответствующие службы.

Место происшествия обрабатывается марганцовым раствором или разведённой хлорной известью. Нельзя собирать ртуть веником или пылесосом, это только усугубит ситуацию, распылив ртуть на большую площадь. К тому же после этого пылесос будет непригоден к использованию, в виду токсического загрязнения.

Цена ртути

Общие объёмы от торговли этим редкоземельным металлом и его различными соединениями, составляет порядком 150 млн. долларов, при мировых запасах около 300 тыс. тонн. В виду ликвидации некоторых основных месторождений поставки ртути на мировой рынок резко сократились, что привело к ценовому подъёму на эту продукцию. Для сравнения в 2001 году, стандартная мерная ёмкость объёмом 34,5 кг, стоила 170 $, к 2005 году цена достигла отметки 775 $. После чего снова пошла на убыль, последние расценки составляли порядком 550 $.

Решением в этом случае стала вторичная ртуть, производимая на ключевых предприятиях. Новейшие технологии обеспечили рынок большим объёмом более дешёвой продукции, что позволило несколько понизить непомерно возросшие цены на ртуть природного происхождения. Хотя цены до сих пор остаются на довольно высоком уровне.

    Ртуть (Hg , от лат. Hydrargyrum ) - элемент шестого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 80, относящийся к подгруппе цинка (побочной подгруппе II группы). Простое вещество ртуть - переходный металл, при комнатной температуре представляющий собой тяжёлую серебристо-белую жидкость, пары которой чрезвычайно ядовиты. Ртуть - один из двух химических элементов (и единственный металл), простые вещества которых при нормальных условиях находятся в жидком агрегатном состоянии (второй такой элемент - бром).


1 История

Происхождение названия

2 Нахождение в природе

2.1 Месторождения

3 В окружающей среде

4 Изотопы

5 Получение

6 Физические свойства

7 Химические свойства

7.1 Характерные степени окисления

7.2 Свойства металлической ртути

8 Применение ртути и её соединений

8.1 Медицина

8.2 Техника

8.3 Металлургия

8.4 Химическая промышленность

8.5 Сельское хозяйство

9 Токсикология ртути

9.1 Гигиеническое нормирование концентраций ртути

9.2 Демеркуризация

История

Астрономический символ планеты Меркурий

Ртуть известна с древних времен. Нередко её находили в самородном виде (жидкие капли на горных породах), но чаще получали обжигом природнойкиновари. Древние греки и римляне использовали ртуть для очистки золота (амальгамирование), знали о токсичности самой ртути и её соединений, в частности сулемы. Много веков алхимики считали ртуть главной составной частью всех металлов и полагали, что если жидкой ртути возвратить твердость при помощи серы или мышьяка, то получится золото. Выделение ртути в чистом виде было описано шведским химиком Георгом Брандтом в 1735 г. Для представления элемента как у алхимиков, так и в нынешнее время используется символ планеты Меркурий. Но принадлежность ртути к металлам была доказана только трудами Ломоносова и Брауна, которые в декабре 1759 года смогли заморозить ртуть и установить её металлические свойства: ковкость, электропроводность и др.

Происхождение названия

Русское название ртути происходит от праслав. *rьt ǫ , связанного с лит. rìsti «катиться» . Символ Hg заимствован от латинского алхимического названия этого элемента hydrargyrum (отдр.-греч. ὕδωρ «вода» и ἄργυρος «серебро»).

Нахождение в природе

Ртуть - относительно редкий элемент в земной коре со средней концентрацией 83 мг/т. Однако ввиду того, что ртуть слабо связывается химически с наиболее распространёнными в земной коре элементами, ртутные руды могут быть очень концентрированными по сравнению с обычными породами. Наиболее богатые ртутью руды содержат до 2,5 % ртути. Основная форма нахождения ртути в природе - рассеянная, и только 0,02 % её заключено в месторождениях. Содержание ртути в различных типах изверженных пород близки между собой (около 100 мг/т). Из осадочных пород максимальные концентрации ртути установлены в глинистых сланцах (до 200 мг/т). В водах Мирового океана содержание ртути - 0,1 мкг/л. Важнейшей геохимической особенностью ртути является то, что среди других халькофильных элементов она обладает самым высоким потенциалом ионизации. Это определяет такие свойства ртути, как способность восстанавливаться до атомарной формы (самородной ртути), значительную химическую стойкость к кислороду и кислотам.

Ртуть присутствует в большинстве сульфидных минералов. Особенно высокие её содержания (до тысячных и сотых долей процента) устанавливаются в блёклых рудах, антимонитах, сфалеритах и реальгарах. Близость ионных радиусов двухвалентной ртути и кальция, одновалентной ртути и бария определяет их изоморфизм во флюоритах и баритах. В киновари и метациннабарите сера иногда замещается селеном или теллуром; содержание селена часто составляет сотые и десятые доли процента. Известны крайне редкие селениды ртути - тиманит (HgSe) и онофрит (смесь тиманита и сфалерита).

Ртуть является одним из наиболее чувствительных индикаторов скрытого оруденения не только ртутных, но и различных сульфидных месторождений, поэтому ореолы ртути обычно выявляются над всеми скрытыми сульфидными залежами и вдоль дорудных разрывных нарушений. Эта особенность, а также незначительное содержание ртути в породах, объясняются высокой упругостью паров ртути, возрастающей с увеличением температуры и определяющей высокую миграцию этого элемента в газовой фазе.

В поверхностных условиях киноварь и металлическая ртуть не растворимы в воде, но при их наличии (Fe 2 (SO 4) 3 , озон, пероксид водорода) растворимость этих минералов достигает десятков мг/л. Особенно хорошо растворяется ртуть в сульфидах едких щелочей с образованием, например, комплекса HgS nNa 2 S. Ртуть легко сорбируется глинами, гидроокислами железа и марганца, глинистыми сланцами и углями .

В природе известно около 20 минералов ртути, но главное промышленное значение имеет киноварь HgS (86,2 % Hg). В редких случаях предметом добычи является самородная ртуть, метациннабарит HgS и блёклая руда - шватцит (до 17 % Hg). На единственном месторождении Гуитцуко (Мексика) главным рудным минералом является ливингстонит HgSb 4 S 7 . В зоне окисления ртутных месторождений образуются вторичные минералы ртути. К ним относятся, прежде всего, самородная ртуть, реже метациннабарит, отличающиеся от таких же первичных минералов большей чистотой состава. Относительно распространена каломель Hg 2 Cl 2 . На месторождении Терлингуа (Техас) распространены и другие гипергенные галоидные соединения - терлингуаит Hg 2 ClO, эглестонит Hg 4 Cl.

Месторождения ртути известны более чем в 40 странах мира. Мировые ресурсы ртути оцениваются в 715 тыс т количественно учтенные запасы - в 324 тыс. т., из которых 26% сосредоточено в Испании, по 13% в Киргизии и России, 8% - в Украине, примерно по 5-6,5% - в Словакии, Словении, Китае, Алжире, Марокко, Турции. Обеспеченность запасами ртути максимального уровня ее потребления, достигнутого в 1990-е годы, составляет для мира около 80 лет. С начала 1970-х гг. из-за экологических факторов конъюнктура рынка ртути стала заметно ухудшаться. Если в начале 1970-х гг. мировое производство первичной ртути (добыча на рудниках и плавка) оценивалось на уровне 10000 т в год, то к концу 1980-х гг. оно уменьшилось более чем в два раза. Это сопровождалось снижением цен на ртуть: с 11 -12 тыс. долларов США за 1 т в 1980-1982 гг. до 4-5 тыс. долларов в 1994-1996 гг. Эксперты считают, что в ближайшие годы не произойдет резкого изменения конъюнктуры рынка ртути. В ряде отраслей ее применение будет медленно сокращаться. Однако в некоторых производствах, в силу различных причин, например, в приборостроении, электротехнике, оборонной промышленности потребление ртути, видимо, останется на прежнем уровне. Химическая промышленность ряда стран, связанная с производством хлора, каустика, ацетальдегида, винилхлорида ртутным способом, также будет оставаться важным потребителем этого металла. Такие предприятия есть и в России.

Ртуть всегда находила широкое применение в различных сферах практической, научной и культурной деятельности человека. К началу 1980-х гг. было известно свыше тысячи разнообразных областей ее применения. Вот основные из них, в которых ртуть и ее соединения в той или иной мере используются и сейчас: - химическая промышленность - производство хлора и каустика, ацетальдегида, хлорвинила, полиуретанов, ртутьорганических пестицидов, красок;

Электротехническая промышленность - производство различных ламп, реле, сухих батарей, переключателей, выпрямителей, игнитронов и др.;

Радиотехническая промышленность и приборостроение - производство контрольно-измерительных приборов (термометры, барометры, манометры, полярографы, электрометры), радио- и телеаппаратуры;

Медицина и фармацевтическая промышленность - изготовление глазных и кожных мазей, веществ бактери­цидного действия, производство витамина В, изготовление зубных пломб (амальгамы серебра и меди);

Сельское хозяйство (ядохимикаты, антисептики);

Машиностроение и вакуумная техника - производство вакуумных насосов и др.;

Военное дело - изготовление детонаторов, управляемых снарядов;

Металлургия - получение сверхчистых металлов, точное литье, амальгамирование благородных металлов;

Горное дело (гремучая ртуть);

Лабораторная практика и аналитическая химия.

В энергетике ртуть использовалась как рабочее тело в мощных бинарных установках промышленного типа, где для генерации электроэнергии на первых ступенях применялись ртутно-паровые турбины, а также в ядерных реакторах для отвода тепла. Элементарную ртуть используют в процессах разделения изотопов лития. Ртутью иногда легируют другие металлы. Небольшие ее добавки увеличивают твердость сплава свинца со щелочноземельными металлами. Ее даже использовали при паянии. Цианид ртути применяли в производстве антисептического мыла.

Http://www.ecotrom.ru/p13.htm

Ртуть

РТУТЬ -и; ж. Химический элемент (Hg), жидкий тяжёлый металл серебристо-белого цвета (широко применяется в химии и электротехнике). Живой, как ртуть. (очень подвижный).

Гремучая ртуть Взрывчатое вещество в виде белого или серого порошка.

ртуть

(лат. Hydrargyrum), химический элемент II группы периодической системы. Серебристый жидкий металл (отсюда латинское название; от греческого hýdōr - вода и árgyros - серебро). Плотность при 20°C 13,546 г/см 3 (тяжелее всех известных жидкостей), t пл –38,87°C, t кип 356,58°C. Пары ртути при высокой температуре и при электрическом разряде излучают голубовато-зелёный свет, богатый ультрафиолетовыми лучами. Химически стойка. Основной минерал - киноварь HgS; встречается также ртуть самородная. Используется при изготовлении термометров, манометров, газоразрядных приборов, в производстве хлора и гидроксида натрия (как катод). Сплавы ртути с металлами - амальгамы. Ртуть и многие её соединения ядовиты.

РТУТЬ

РТУ́ТЬ (лат. Hydrargyrum), Hg (читается «гидраргирум»), химический элемент с атомным номером 80, атомная масса 200,59.
Природная ртуть состоит из смеси семи стабильных нуклидов: 196 Hg (содержание 0,146% по массе), 198 Hg (10,02%), 199 Hg (16,84%), 200 Hg (23,13%), 201 Hg (13,22%), 202 Hg (29,80%) и 204 Hg (6,85%). Радиус атома ртути 0,155 нм. Радиус иона Hg + - 0,111 нм (координационное число 3), 0,133 нм (координационное число 6), иона Hg 2+ - 0,083 нм (координационное число 2), 0,110 нм (координационное число 4), 0,116 нм (координационное число 6) или 0,128 нм (координационное число 8). Энергии последовательной ионизации нейтрального атома ртути равны 10,438, 18,756 и 34,2 эВ. Расположена во IIВ группе, 6 периода периодической системы. Конфигурация внешнего и предвнешнего электронных слоев 5s 2 p 6 d 10 6s 2 . В соединениях проявляет степени окисления +1 и +2. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,9.
История открытия
Ртуть известна человечеству с древнейших времен. Обжиг киновари (см. КИНОВАРЬ) HgS, приводящий к получению жидкой ртути, использовали еще в 5 в. до н. э. в Междуречье (см. МЕСОПОТАМИЯ) . Использование киновари и жидкой ртути описано в древних документах Китая, Ближнего Востока. Первое подробное описание получения ртути из киновари описано Теофрастом (см. ТЕОФРАСТ) около 300 лет до н. э.
В древности ртуть использовали для добычи золота (см. ЗОЛОТО (химический элемент)) из золотых руд. Этот способ основан на ее способности растворять многие металлы, образуя жидкие или легкоплавкие амальгамы (см. АМАЛЬГАМА) . При прокаливании амальгамы золота летучая ртуть испаряется, золото остается. Во второй половине 15 в в Мексике применяли амальгамирование для извлечения из руды серебра (см. СЕРЕБРО) .
Алхимики считали ртуть составной частью всех металлов, полагая, что изменением ее содержания можно осуществить превращение ртути в золото. Только в 20 в. физики установили, что в процессе ядерной реакции атомы ртути действительно превращаются в атомы золота. Но такой способ чрезвычайно дорог.
Жидкая ртуть - очень подвижная жидкость. Алхимики называли ртуть «меркурием» по имени римского бога Меркурия, славившегося своей быстротой в перемещении. В английском, французском, испанском и итальянском языках для ртути используется название «mercury». Современное латинское название происходит от греческих слов «хюдор» - вода и «аргирос» - серебро, т. е. «жидкое серебро».
Ртутные препараты использовали в медицине в средние века (ятрохимия (см. ЯТРОХИМИЯ) ).
Нахождение в природе
Редкий рассеянный элемент. Содержание ртути в земной коре 7,0·10 –6 % по массе. В природе ртуть встречается в свободном состоянии. Образует более 30 минералов. Основной рудный минерал киноварь. Минералы ртути в виде изоморфных примесей встречаются в кварце, халцедоне, карбонатах, слюдах, свинцово-цинковых рудах. Желтая модификация HgO встречается в природе в виде минерала монтроидита. В обменных процессах литосферы, гидросферы, атмосферы участвует большое количество ртути. Содержание ртути в рудах от 0,05 до 6-7%.
Получение
Первоначально ртуть получали из киновари (см. КИНОВАРЬ) , помещая ее куски в вязанки хвороста и обжигая киноварь в кострах.
В настоящее время ртуть получают окислительно-восстановительным обжигом руд или концентратов при 700-800 о С в печах кипящего слоя, трубчатых или муфельных. Условно процесс может быть выражен:
HgS + O 2 = Hg + SO 2
Выход ртути при таком способе составляет около 80%. Более эффективен способ получения ртути путем нагревания руды с Fe (см. ЖЕЛЕЗО) и CaO:
HgS + Fe = Hg – + FeS,
4HgS + 4CaO = 4Hg – + 3CaS + CaSO 4 .
Особо чистую ртуть получают электрохимическим рафинированием на ртутном электроде. При этом содержание примесей составляет от 1·10 –6 до 1·10 –7 %.
Физические и химические свойства
Ртуть - серебристо-белый металл, в парах бесцветный. Единственный жидкий при комнатной температуре металл. Температура плавления –38,87°C, кипения 356,58°C. Плотность жидкой ртути при 20°C 13,5457 г/см 3 , твердой ртути при –38,9°C - 14,193 г/см 3 .
Твердая ртуть - бесцветные кристаллы октаэдрической формы, существующая в двух кристаллических модификациях. «Высокотемпературная» модификация обладает ромбоэдрической решеткой a-Hg, параметры ее элементарной ячейки (при 78 К) а= 0,29925 нм, угол b = 70,74 о. Низкотемпературная модификация b-Hg обладает тетрагональной решеткой (ниже 79К).
С использованием ртути голландский физик и химик Х.Камерлинг-Оннес (см. КАМЕРЛИНГ-ОННЕС Хейке) в 1911 впервые наблюдал явление сверхпроводимости (см. СВЕРХПРОВОДИМОСТЬ) . Температура перехода a-Hg в сверхпроводящее состояние 4,153К, b-Hg - 3,949К. При более высоких температурах ртуть ведет себя как диамагнетик (см. ДИАМАГНЕТИК) . Жидкая ртуть не смачивает стекло и практически не растворяется в воде (в 100 г воды при 25°C растворяется 6·10 –6 г ртути).
Стандартный электродный потенциал пары Hg 2+ 2 /Hg 0 = +0.789 B, пары Hg 2+ /Hg 0 = +0.854B, пары Hg 2+ /Hg 2+ 2 = +0.920B. В неокисляющих кислотах ртуть не растворяется с выделением водорода (см. ВОДОРОД) . (см. КИСЛОРОД)
Кислород (см. КИСЛОРОД) и сухой воздух при обычных условиях ртуть не окисляют. Влажный воздух и кислород при ультрафиолетовом облучении или электронной бомбардировке окисляют ртуть с поверхности с образованием оксидов.
Ртуть окисляется кислородом воздуха при температуре выше 300°C, образуя оксид ртути HgO красного цвета:
2Hg + O 2 = 2HgO.
Выше 340°C этот оксид разлагается на простые вещества.
При комнатной температуре ртуть окисляется озоном (см. ОЗОН) .
Ртуть не реагирует при нормальных условиях с молекулярным водородом, но с атомарным водородом образует газообразный гидрид HgH. Ртуть не взаимодействует с азотом, фосфором, мышьяком, углеродом, кремнием, бором, германием.
С разбавленными кислотами ртуть не реагирует, но растворяется в царской водке (см. ЦАРСКАЯ ВОДКА) и в азотной кислоте. Причем, в случае с кислотой продукт реакции зависит от концентрации кислоты и соотношения ртути и кислоты. При избытке ртути, на холоду, протекает реакция:
6Hg + 8HNO 3 разбавл. = 3Hg 2 (NO 3) 2 + 2NO + 4H 2 O.
При избытке кислоты:
3Hg + 8HNO 3 = 3Hg(NO 3) 2 + 2NO + 4H 2 O.
С галогенами (см. ГАЛОГЕНЫ) ртуть активно взаимодействует с образованием галогенидов (см. ГАЛОГЕНИДЫ) . При реакциях ртути с серой (см. СЕРА) , селеном (см. СЕЛЕН) и теллуром (см. ТЕЛЛУР) возникают халькогениды (см. ХАЛЬКОГЕНИДЫ) HgS, HgSe, HgTe. Эти халькогениды праrтически не растворимы в воде. Например, значение ПР HgS = 2·10 –52 . Сульфид ртути растворяется только в кипящей HCl, царской водке (при этом образуется комплекс 2–) и в концентрированных растворах сульфидов щелочных металлов:
HgS + K 2 S = K 2 .
Сплавы ртути с металлами называют амальгамами (см. АМАЛЬГАМА) . Стойкие к амальгамированию металлы - железо (см. ЖЕЛЕЗО) , ванадий (см. ВАНАДИЙ) , молибден (см. МОЛИБДЕН) , вольфрам (см. ВОЛЬФРАМ) , ниобий (см. НИОБИЙ) и тантал (см. ТАНТАЛ (химический элемент)) . Со многими металлами ртуть образует интерметаллические соединения меркуриды.
Ртуть образует два оксида: оксид ртути(II) HgO и неустойчивый на свету и при нагревании оксид ртути(I) Hg 2 O (черные кристаллы).
HgO образует две модификации - желтую и красную, отличающиеся размерами кристаллов. Красная модификация образуется при добавлении к раствору соли Hg 2+ щелочи:
Hg(NO 3) 2 + 2NaOH = HgOЇ + 2NaNO 3 + H 2 O.
Желтая форма химически более активна, при нагревании краснеет. Красная форма при нагревании чернеет, но приобретает прежний цвет при охлаждении.
При добавлении щелочи к раствору соли ртути(I) образуется оксид ртути (I) Hg 2 O:
Hg 2 (NO 3) 2 + 2NaOH = Hg 2 O + H 2 O + 2NaNO 3 .
На свету Hg 2 O распадается на ртуть и HgO, давая осадок черного цвета.
Для соединений ртути(II) характерно образование устойчивых комплексных соединений (см. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ) :
2KI + HgI 2 = K 2 ,
2KCN + Hg(CN) 2 = K 2 .
Соли ртути(I) содержат группировку Hg 2 2+ со связью –Hg–Hg–. Получают эти соединения, восстанавливая соли ртути(II) ртутью:
HgSO 4 + Hg + 2NaCl = Hg 2 Cl 2 + Na 2 SO 4 ,
HgCl 2 + Hg = Hg 2 Cl 2 .
В зависимости от условий, соединения ртути(I) могут проявлять как окислительные, так и восстановительные свойства:
Hg 2 Cl 2 + Cl 2 = 2HgCl 2 ,
Hg 2 Cl 2 + SnCl 2 = 2Hg + SnCl 4 . (см. ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ)
Пероксид (см. ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ) HgO 2 - кристаллы; неустойчив, взрывается при нагревании и ударе.
Применение
Ртуть используют для изготовления катодов при электрохимическом получении едких щелочей и хлора, а также для полярографов, в диффузионных насосах, барометрах и манометрах; для определения чистоты фтора и его концентрации в газах. Парами ртути наполняют колбы газоразрядных ламп (ртутных и люминесцентных) и источников УФ излучения. Ртуть применяют при нанесении золотых покрытий и при добычи золота из руды. (см. )
Сулема (см. ) - важнейший антисептик, применяют при разбавлениях 1:1000. Оксид ртути (II), киноварь HgS применяются для лечения глазных и кожных и венерических заболеваний. Киноварь также используют для приготовления чернил и красок. В древности из киновари готовили румяна. Каломель (см. КАЛОМЕЛЬ) используется в ветеринарии в качестве слабительного средства.
Физиологическое действие
Ртуть и ее соединения высокотоксичны. Пары и соединения ртути накапливаясь в организме человека, сорбируются легкими, попадают в кровь, нарушают обмен веществ и поражают нервную систему. Признаки ртутного отравления проявляются уже при содержании ртути в концентрации 0.0002–0.0003 мг/л. Пары ртути фитотоксичны, ускоряют старение растений.
При работе с ртутью и ее соединениями следует предотвращать ее попадание в организм через дыхательные пути и кожу. Хранят в закрытых сосудах.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "ртуть" в других словарях:

    Ртуть, и … Русский орфографический словарь

    Ртуть/ … Морфемно-орфографический словарь

    РТУТЬ, Hydrargyrum (от греч. hydor вода и argyros серебро), Mercurium, Hydrargyrum VІvum, s. metallicum, Mercurius VІvus, Argentum VІvum, серебристо белый жидкий металл, симв. Hg, ат. в. 200,61; уд. в. 13,573; ат. объем 15,4; t° замерз.… … Большая медицинская энциклопедия

Между селом Карагаш и городом Слободзея, сообщил в пятницу местный телеканал со ссылкой на министерство госбезопасности (МГБ) непризнанной республики.

(Hg) - химический элемент II группы периодической системы Менделеева, атомный номер 80, атомная масса 200,59; серебристо-белый тяжелый металл, жидкий при комнатной температуре.

Ртуть - один из семи металлов , известных с древнейших времен. Несмотря на то, что ртуть относится к рассеянным элементам и в природе ее очень мало (примерно столько же, сколько и серебра), она встречается в свободном состоянии в виде вкраплений в горные породы.

Кроме того, ее очень легко выделить при обжиге из основного минерала - сульфида (киновари). Пары ртути легко конденсируются в блестящую, как серебро, жидкость. Ее плотность настолько велика (13,6 г/куб. см), что ведро с ртутью обычный человек даже не оторвет от пола.

Ртуть широко применяется при изготовлении научных приборов (барометры, термометры, манометры, вакуумные насосы, нормальные элементы, полярографы, капиллярные электрометры и др.), в ртутных лампах, переключателях, выпрямителях; как жидкий катод в производстве едких щелочей и хлора электролизом, в качестве катализатора при синтезе уксусной кислоты, в металлургии для амальгамации золота и серебра, при изготовлении взрывчатых веществ; в медицине (каломель, сулема, ртутьорганические и другие соединения), в качестве пигмента (киноварь), в сельском хозяйстве в качестве протравителя семян и гербицида, а также как компонент краски морских судов (для борьбы с обрастанием их организмами).

В домашних условиях ртуть может оказаться в дверном звонке, лампах дневного света, медицинском термометре.

Металлическая ртуть высокотоксична для любых форм жизни. Основную опасность представляют пары ртути, выделение которых с открытых поверхностей возрастает при повышении температуры воздуха. При вдыхании ртуть попадает в кровь. В организме ртуть циркулирует в крови, соединяясь с белками; частично откладывается в печени, в почках, селезёнке, ткани мозга и др.

Токсическое действие связано с блокированием сульфгидрильных групп тканевых белков, нарушением деятельности головного мозга (в первую очередь, гипоталамуса). Из организма ртуть выводится через почки, кишечник, потовые железы и др.

Острые отравления ртутью и ее парами встречаются редко. При хронических отравлениях наблюдаются эмоциональная неустойчивость, раздражительность, снижение работоспособности, нарушение сна, дрожание пальцев рук, снижение обоняния, головные боли. Характерный признак отравления - появление по краю десен каймы сине-черного цвета; поражение десен (разрыхленность, кровоточивость) может привести к гингивиту и стоматиту.

При отравлениях органическими соединениями ртути (диэтилмеркурфосфатом, диэтил-ртутью, этилмеркурхлоридом) преобладают признаки одновременного поражения центральной нервной (энцефало-полиневрит) и сердечно-сосудистой систем, желудка, печени, почек.

Основная мера предосторожности при работе с ртутью и ее соединениями - исключение попадания ртути в организм через дыхательные пути или поверхность кожи.

Пролитую в помещении ртуть надо собирать самым тщательным образом. Особенно много паров образуется в том случае, если ртуть рассыпалась на множество мельчайших капелек, которые забились в различные щели, например, между плитками паркета. Все эти капельки необходимо собрать.

Лучше всего это сделать с помощью оловянной фольги, к которой ртуть легко прилипает, или же промытой азотной кислотой медной проволочкой. А те места, где ртуть еще могла бы задержаться, заливают 20%-ным раствором хлорного железа. Хорошая профилактическая мера против отравления парами ртути - тщательно и регулярно, в течение многих недель или даже месяцев, проветривать помещение, где была пролита ртуть.

Экологические последствия заражения парами ртути проявляются, прежде всего, в водной среде - подавляется жизнедеятельность одноклеточных морских водорослей и рыб, нарушается фотосинтез, ассимилируются нитраты, фосфаты, соединения аммония и т. д. Пары ртути фитотоксичны, ускоряют старение растений.