Взаимодействие сернистой кислоты. Сернистая кислота

    СЕРНИСТАЯ КИСЛОТА - H2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в водных растворах. Соли сернистой кислоты сульфиты … Большой Энциклопедический словарь

    СЕРНИСТАЯ КИСЛОТА - (H2SO3) слабая двухосновная кислота. Существует лишь в водных растворах. Соли С. к. сульфиты. Применяют в целлюлозно бумажной и пищевой промышленности. См. также Кислоты и ангидриды … Российская энциклопедия по охране труда

    сернистая кислота - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN sulfurous acid … Справочник технического переводчика

    сернистая кислота - Н2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в водных растворах. Соли серной кислоты сульфиты. * * * СЕРНИСТАЯ КИСЛОТА СЕРНИСТАЯ КИСЛОТА, H2SO3, слабая двухосновная кислота. В свободном виде не выделена,… … Энциклопедический словарь

    сернистая кислота - sulfito rūgštis statusas T sritis chemija formulė H₂SO₃ atitikmenys: angl. sulfurous acid rus. сернистая кислота ryšiai: sinonimas – vandenilio trioksosulfatas (2–) … Chemijos terminų aiškinamasis žodynas

    Сернистая кислота - H2SO3, слабая двухосновная кислота, отвечающая степени окисления серы +4. Известна только в разбавленных водных растворах. Константы диссоциации: K1 = 1,6 · 10 2, K2 = 1,0 · 10 7 (18°C). Даёт два ряда солей: нормальные Сульфиты и кислые… … Большая советская энциклопедия

    СЕРНИСТАЯ КИСЛОТА - H2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в вод. р рах. Соли С. к. сульфиты … Естествознание. Энциклопедический словарь

    Сернистая кислота - см. Сера … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    H2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в водных растворах. Соли сернистой кислоты сульфиты … Большой Энциклопедический словарь

    СЕРНИСТАЯ КИСЛОТА - (H2SO3) слабая двухосновная кислота. Существует лишь в водных растворах. Соли С. к. сульфиты. Применяют в целлюлозно бумажной и пищевой промышленности. См. также Кислоты и ангидриды … Российская энциклопедия по охране труда

    сернистая кислота - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN sulfurous acid … Справочник технического переводчика

    Н2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в водных растворах. Соли серной кислоты сульфиты. * * * СЕРНИСТАЯ КИСЛОТА СЕРНИСТАЯ КИСЛОТА, H2SO3, слабая двухосновная кислота. В свободном виде не выделена,… … Энциклопедический словарь

    сернистая кислота - sulfito rūgštis statusas T sritis chemija formulė H₂SO₃ atitikmenys: angl. sulfurous acid rus. сернистая кислота ryšiai: sinonimas – vandenilio trioksosulfatas (2–) … Chemijos terminų aiškinamasis žodynas

    H2SO3, слабая двухосновная кислота, отвечающая степени окисления серы +4. Известна только в разбавленных водных растворах. Константы диссоциации: K1 = 1,6 · 10 2, K2 = 1,0 · 10 7 (18°C). Даёт два ряда солей: нормальные Сульфиты и кислые… … Большая советская энциклопедия

    H2SO3, слабая двухосновная кислота. В свободном виде не выделена, существует в вод. р рах. Соли С. к. сульфиты … Естествознание. Энциклопедический словарь

    См. Сера … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Дата публикации 07.01.2013 16:35

Сернистая кислота – это неорганическая двухосновная неустойчивая кислота средней силы. Непрочное соединение, известна только в водных растворах при концентрации не более шести процентов. При попытках выделить чистую сернистую кислоту она распадается на оксид серы (SO2) и воду (H2O). Например, при воздействии серной кислоты (H2SO4) в концентрированном виде на сульфит натрия (Na2SO3) вместо сернистой кислоты выделяется оксид серы (SO2). Вот так выглядит данная реакция:

Na2SO3 (сульфит натрия) + H2SO4 (серная кислота) = Na2SO4 (сульфат натрия) + SO2 (серы диоксид) + H2O (вода)

Раствор сернистой кислоты

При его хранении необходимо исключить доступ воздуха. Иначе сернистая кислота, медленно поглощая кислород (O2), превратится в серную.

2H2SO3 (кислота сернистая) + O2 (кислород) = 2H2SO4 (кислота серная)

Растворы сернистой кислоты имеют довольно специфический запах (напоминает запах, остающийся после зажжения спички), наличие которого можно объяснить присутствием оксида серы (SO2), химически не связанного водой.

Химические свойства сернистой кислоты

1. Сернистая кислота (формула H2SO3) может использоваться в качестве восстановителя или окислителя.

H2SO3 является хорошим восстановителем. С ее помощью можно из свободных галогенов получить галогеноводороды. Например:

H2SO3 (кислота сернистая) + Cl2 (хлор, газ) + H2O (вода) = H2SO4 (кислота серная) + 2HCl (соляная кислота)

Но при взаимодействии с сильными восстановителями данная кислота будет выполнять роль окислителя. Примером может послужить реакция сернистой кислоты с сероводородом:

H2SO3 (кислота сернистая) + 2H2S (сероводород) = 3S (сера) + 3H2O (вода)

2. Рассматриваемое нами химическое соединение образует два вида солей - сульфиты (средние) и гидросульфиты (кислые). Эти соли являются восстановителями, так же, как и (H2SO3) сернистая кислота. При их окислении образуются соли серной кислоты. При прокаливании сульфитов активных металлов образуются сульфаты и сульфиды. Это реакция самоокисления-самовосстановления. Например:

4Na2SO3 (сульфит натрия) = Na2S (сульфид натрия) + 3Na2SO4 (сульфат натрия)

Сульфиты натрия и калия (Na2SO3 и K2SO3) применяются при крашении тканей в текстильной промышленности, при отбеливании металлов, а также в фотографии. Кальция гидросульфит (Ca(HSO3)2), существующий только в растворе, используется для переработки древесного материала в специальную сульфитную целлюлозу. Из нее потом делают бумагу.

Применение сернистой кислоты

Сернистая кислота используется:

– для обесцвечивания шерсти, шелка, древесной массы, бумаги и других аналогичных веществ, не выдерживающих отбеливания при помощи более сильных окислителей (например, хлора);

– как консервант и антисептик, например, для предотвращения ферментации зерна при получении крахмала или для предотвращения процесса брожения в бочках вина;

– для сохранения продуктов, например, при консервировании овощей и плодов;

– в переработке щепы древесной в целлюлозу сульфитную, из которой потом получают бумагу. В этом случае используется раствор кальция гидросульфита (Ca(HSO3)2), который растворяет лигнин – особое вещество, связывающее волокна целлюлозы.

Сернистая кислота: получение

Данную кислоту можно получить посредством растворения сернистого газа (SO2) в воде (H2O). Вам понадобятся серная кислота в концентрированном виде (H2SO4), медь (Cu) и пробирка. Алгоритм действий:

1. Осторожно налейте в пробирку концентрированную сернистую кислоту и затем поместите туда кусочек меди. Нагрейте. Происходит следующая реакция:

Cu (медь) + 2H2SO4 (серная кислота) = CuSO4 (сульфат серы) + SO2 (сернистый газ) + H2O (вода)

2. Поток сернистого газа необходимо направить в пробирку с водой. При его растворении частично происходит химическая реакция с водой, в результате которой образуется сернистая кислота:

SO2 (сернистый газ) + H2O (вода) = H2SO3

Итак, пропуская сернистый газ через воду, можно получить сернистую кислоту. Стоит учесть, что данный газ оказывает раздражающее воздействие на оболочки дыхательных путей, может вызвать их воспаление, а также потерю аппетита. При длительном его вдыхании возможна потеря сознания. Обращаться с этим газом нужно с предельной осторожностью и внимательность.

Сернистая кислота - это неорганическая двухосновная неустойчивая кислота средней силы. Непрочное соединение, известна только в водных растворах при концентрации не более шести процентов. При попытках выделить чистую сернистую кислоту она распадается на оксид серы (SO2) и воду (H2O). Например, при воздействии серной кислоты (H2SO4) в концентрированном виде на сульфит натрия (Na2SO3) вместо сернистой кислоты выделяется оксид серы (SO2). Вот так выглядит данная реакция:

Na2SO3 (сульфит натрия) + H2SO4 (серная кислота) = Na2SO4 (сульфат натрия) + SO2 (серы диоксид) + H2O (вода)

Раствор сернистой кислоты

При его хранении необходимо исключить доступ воздуха. Иначе сернистая кислота, медленно поглощая кислород (O2), превратится в серную.

2H2SO3 (кислота сернистая) + O2 (кислород) = 2H2SO4 (кислота серная)

Растворы сернистой кислоты имеют довольно специфический запах (напоминает запах, остающийся после зажжения спички), наличие которого можно объяснить присутствием оксида серы (SO2), химически не связанного водой.

Химические свойства сернистой кислоты

1. H2SO3) может использоваться в качестве восстановителя или окислителя.

H2SO3 является хорошим восстановителем. С ее помощью можно из свободных галогенов получить галогеноводороды. Например:

H2SO3 (кислота сернистая) + Cl2 (хлор, газ) + H2O (вода) = H2SO4 (кислота серная) + 2HCl (соляная кислота)

Но при взаимодействии с сильными восстановителями данная кислота будет выполнять роль окислителя. Примером может послужить реакция сернистой кислоты с сероводородом:

H2SO3 (кислота сернистая) + 2H2S (сероводород) = 3S (сера) + 3H2O (вода)

2. Рассматриваемое нами химическое соединение образует два - сульфиты (средние) и гидросульфиты (кислые). Эти соли являются восстановителями, так же, как и (H2SO3) сернистая кислота. При их окислении образуются соли серной кислоты. При прокаливании сульфитов активных металлов образуются сульфаты и сульфиды. Это реакция самоокисления-самовосстановления. Например:

4Na2SO3 (сульфит натрия) = Na2S + 3Na2SO4 (сульфат натрия)

Сульфиты натрия и калия (Na2SO3 и K2SO3) применяются при крашении тканей в текстильной промышленности, при отбеливании металлов, а также в фотографии. Кальция гидросульфит (Ca(HSO3)2), существующий только в растворе, используется для переработки древесного материала в специальную сульфитную целлюлозу. Из нее потом делают бумагу.

Применение сернистой кислоты

Сернистая кислота используется:

Для обесцвечивания шерсти, шелка, древесной массы, бумаги и других аналогичных веществ, не выдерживающих отбеливания при помощи более сильных окислителей (например, хлора);

Как консервант и антисептик, например, для предотвращения ферментации зерна при получении крахмала или для предотвращения процесса брожения в бочках вина;

Для сохранения продуктов, например, при консервировании овощей и плодов;

В переработке в целлюлозу сульфитную, из которой потом получают бумагу. В этом случае используется раствор кальция гидросульфита (Ca(HSO3)2), который растворяет лигнин - особое вещество, связывающее волокна целлюлозы.

Сернистая кислота: получение

Данную кислоту можно получить посредством растворения сернистого газа (SO2) в воде (H2O). Вам понадобятся серная кислота в концентрированном виде (H2SO4), медь (Cu) и пробирка. Алгоритм действий:

1. Осторожно налейте в пробирку концентрированную сернистую кислоту и затем поместите туда кусочек меди. Нагрейте. Происходит следующая реакция:

Cu (медь) + 2H2SO4 (серная кислота) = CuSO4 (сульфат серы) + SO2 (сернистый газ) + H2O (вода)

2. Поток сернистого газа необходимо направить в пробирку с водой. При его растворении частично происходит с водой, в результате которой образуется сернистая кислота:

SO2 (сернистый газ) + H2O (вода) = H2SO3

Итак, пропуская сернистый газ через воду, можно получить сернистую кислоту. Стоит учесть, что данный газ оказывает раздражающее воздействие на оболочки дыхательных путей, может вызвать их воспаление, а также потерю аппетита. При длительном его вдыхании возможна потеря сознания. Обращаться с этим газом нужно с предельной осторожностью и внимательность.

Соединения серы(1У). Сернистая кислота

В тетрагалогенидах SHal 4 , оксогалогенидах SOI Ial 2 и диоксиде S0 2 , сернистой кислоте 1I 2 S0 3 сера проявляет степень окисления +4. Во всех этих соединениях, а также в соответствующих им анионных комплексах у атома серы имеется неноделенная пара электронов. Исходя из числа а-связываю- щих и несвязывающих электронных нар форма молекул этих соединений изменяется от искаженного тетраэдра (SHal 4) к угловой форме (S0 9) через форму тригональной пирамиды (SOHal 2 и SO3). Соединения S(IV) обладают кислотными свойствами, что проявляется в реакциях взаимодействия с водой:

Оксид серы(1У) S0 2 , или сернистый газ, образуется при сжигании серы в воздухе или кислороде, а также прокаливанием сульфидов, например пирита:

Окисление пирита лежит в основе промышленного способа получения S0 2 . Молекула S0 2 построена аналогично молекуле О э и имеет структуру равнобедренного треугольника с атомом серы в вершине. Длина связи S-О составляет 0,143 нм, а валентный угол равен 119,5°:

Атом серы находится в состоянии 5/? 2 -гибридизации. р-Орбиталь ориентирована перпендикулярно к плоскости молекулы и не участвует в гибридизации (рис. 25.2). За счет этой и других аналогично ориентированных р-орбиталей атомов кислорода образуется трехцентровая л-связь.

Рис. 25.2.

При обычных условиях оксид серы(1У) - бесцветный газ с характерным резким запахом. Хорошо растворим в воде. Водные растворы имеют кислую реакцию, так как S0 2 , взаимодействуя с водой, образует сернистую кислоту H 2 S0 3 . Реакция обратимая:

Характерная особенность S0 2 - его окислительно-восстановительная двойственность. Объясняется это тем, что в SO. ; сера имеет степень окисления +4, и поэтому она может, отдавая два электрона, окисляться до S(VI), а принимая четыре электрона, восстанавливаться до S. Проявление тех и других свойств зависит от характера реагирующего компонента. Так, с сильными окислителями S0 2 ведет себя как типичный восстановитель. Например, галогены восстанавливаются до соответствующих галогеноводородов, a S(IV) переходит, как правило, в S(VI):

В присутствии сильных восстановителей S0 2 ведет себя как окислитель:

Для него характерна и реакция диспропорционирования:

SQ, является кислотным оксидом, легко растворимым в воде (1 объем Н 2 0 растворяет 40 объемов S0 2). Водный раствор SO v имеет кислую реакцию и называется сернистой кислотой. Обычно основная масса растворенного в воде S0 2 находится в растворе в гидратированной форме S0 2 azH 2 0, и только незначительная часть S0 2 взаимодействует с водой по схеме

Сернистая кислота, как двухосновная, образует два типа солей: средние - сульфиты (Na 2 S0 3) и кислые - гидросульфиты (NaHS0 3). H 2 S0 3 существует в двух таутомерных формах (рис. 25.3).

Рис. 25.3. Структура таутомерных форм H 2 S0 3

Поскольку сера в сернистой кислоте имеет степень окисления +4, то она проявляет, как и S0 2 , свойства и окислителя, и восстановителя, о чем уже говорилось, поэтому сернистая кислота в реакциях окисления-восстановления полностью дублирует свойства S0 9 .

Соли H 2 S0 3 (сульфиты) обладают свойствами как окислителей, так и восстановителей. Так, ион SO 2 легко переходит в ион SO 2 , проявляя сильные восстановительные свойства, поэтому в растворах сульфиты постепенно окисляются молекулярным кислородом, переходя в соли серной кислоты:

В присутствии же сильных восстановителей сульфиты ведут себя как окислители. При сильном нагревании сульфиты наиболее активных металлов разлагаются при 600°С с образованием солей H 2 SO^ и H 2 S, т.е. происходит диспропорционирование:

Из солей сернистой кислоты растворяются лишь соли 5-элементов I группы, а также гидросульфиты типа Me 2+ (HS0 3) 2 .

Поскольку H 2 S0 3 является слабой кислотой, то при действии кислот па сульфиты и гидросульфиты происходит выделение S0 2 , чем обычно пользуются при получении S0 2 в лабораторных условиях:

Растворимые в воде сульфиты легко подвергаются гидролизу, вследствие чего в растворе увеличивается концентрация ионов ОН:

При пропускании S0 2 через водные растворы гидросульфитов образуются пиросульфиты:

Если же раствор Na 2 S0 3 кипятить с порошком серы, то образуется тиосульфат натрия. В тиосульфатах атомы серы находятся в двух разных степенях окисления - +6 и -2:

Образующемуся тиосульфат-иону соответствует кислота H 2 S 2 0 3 , называемая тиосерной кислотой. Свободная кислота при обычных условиях неустойчива и легко разлагается:

Свойства тиосульфатов обусловлены наличием в них и , причем

присутствие S определяет восстановительные свойства иона S 2 0 3 _ :

Более слабые окислители окисляют тиосульфат натрия до солей тетра- тионовой кислоты. Примером может служить взаимодействие с иодом:

Эта реакция находит широкое применение в аналитической химии, так как является основой одного из важнейших методов объемного анализа, называемого иодометрией.

Тиосульфаты щелочных металлов производятся в промышленности в широких масштабах. Среди них наибольшее значение имеет тиосульфат натрия Na 2 S 2 0 3 , который применяется в медицине в качестве противоядия при отравлении галогенами и цианидами. Действие этого препарата основано на его свойстве выделять серу, которая, например, с цианид-ионами CN образует менее токсичный роданид-ион SCN:

Препарат может использоваться также при отравлении соединениями As, Pb, Hg, поскольку при этом образуются неядовитые сульфиды. Na 2 S 2 0 3 применяется при аллергических заболеваниях, артритах, невралгии. Характерной для Na 2 S 2 0 3 реакцией является взаимодействие его с AgN0 3: образуется осадок белого цвета Ag. ; S. ; 0 3 , который с течением времени под влиянием света и влаги чернеет с выделением Ag 2 S:

Данные реакции применяют для качественного обнаружения тиосульфат-иона.

Тионилхлорид SOCl 2 получают взаимодействием S0 2 с РС1 5:

Молекула SOCl 2 имеет пирамидальное строение (рис. 25.4). Связи с серой образуются за счет набора орбиталей, которые очень приближенно можно рассматривать как $/? 3 -гибридные. Одна из них занята неподеленной парой электронов, поэтому SOCl 2 может проявлять свойства слабого основания Лыоиса.

Рис. 25.4.

S()C1 2 - бесцветная дымящаяся жидкость с резким запахом, гидролизуется в присутствии следов влаги:

Летучие соединения, образующиеся в процессе реакции, легко удаляются. Поэтому SOCl 2 часто применяют для получения безводных хлоридов:

SOCl 2 находит широкое применение как хлорирующий агент в органических синтезах.