Перемещение векторная или скалярная. Векторная величина в физике: определение, обозначение, примеры

В курсе физике часто встречаются такие величины, для описания которых достаточно знать только числовые значения. Например, масса, время, длина.

Величины, которые характеризуются только числовым значением, называются скалярными или скалярами .

Кроме скалярных величин, используются величины, которые имеют и числовое значение и направление. Например, скорость, ускорение, сила.

Величины, которые характеризуются числовым значением и направлением, называются векторными или векторами .

Обозначаются векторные величины соответствующими буквами со стрелкой наверху или выделяются жирным шрифтом. Например, вектор силы обозначается \(\vec F\) или F . Числовое значение векторной величины называется модулем или длиной вектора. Значение вектора силы обозначают F или \(\left|\vec F \right|\).

Изображение вектора

Векторы изображают направленными отрезками. Началом вектора называют ту точку, откуда начинается направленный отрезок (точка А на рис. 1), концом вектора – точку, в которой заканчивается стрелка (точка B на рис. 1).

Рис. 1.

Два вектора называются равными , если они имеют одинаковую длину и направлены в одну сторону. Такие вектора изображают направленными отрезками, имеющими одинаковые длины и направления. Например, на рис. 2 изображены векторы \(\vec F_1 =\vec F_2\).

Рис. 2.

При изображении на одном рисунке двух и более векторов, отрезки строят в заранее выбранном масштабе. Например, на рис. 3 изображены вектора, длины которых \(\upsilon_1\) = 2 м/c, \(\upsilon_2\) = 3 м/c.

Рис. 3.

Способ задания вектора

На плоскости вектор можно задавать несколькими способами:

1. Указать координаты начала и конца вектора. Например, вектор \(\Delta\vec r\) на рис. 4 задан координатами начала вектора – (2, 4) (м), конца – (6, 8) (м).

Рис. 4.

2. Указать модуль вектора (его значение) и угол между направлением вектора и некоторым заранее выбранным направлением на плоскости. Часто за такое направление в положительную сторону оси 0Х . Углы, измеренные от этого направления против часовой стрелки, считаются положительными. На рис. 5 вектор \(\Delta\vec r\) задан двумя числами b и \(\alpha\) , указывающими длину и направление вектора.

Рис. 5.

Вектор − чисто математическое понятие, которое лишь применяется в физике или других прикладных науках и которое позволяет упростить решение некоторых сложных задач.
Вектор − направленный отрезок прямой.
 В курсе элементарной физики приходится оперировать двумя категориями величин − скалярными и векторными .
Скалярными величинами (скалярами) называют величины, характеризующиеся числовым значением и знаком. Скалярами являются длина − l , масса − m , путь − s , время − t , температура − T , электрический заряд − q , энергия − W , координаты и т.д.
 К скалярным величинам применяются все алгебраические действия (сложение, вычитание, умножение и т.д.).

Пример 1 .
 Определить полный заряд системы, состоящий из зарядов, входящих в нее, если q 1 = 2 нКл, q 2 = −7 нКл, q 3 = 3 нКл.
Полный заряд системы
q = q 1 + q 2 + q 3 = (2 − 7 + 3) нКл = −2 нКл = −2 × 10 −9 Кл.

Пример 2 .
 Для квадратного уравнения вида
ax 2 + bx + с = 0;
x 1,2 = (1/(2a)) × (−b ± √{b 2 − 4ac}).

Векторными величинами (векторами) называют величины, для определения которых необходимо указать кроме численного значения так же и направление. Векторы − скорость v , сила F , импульс p , напряженность электрического поля E , магнитная индукция B и др.
 Численное значение вектора (модуль) обозначают буквой без символа вектора или заключают вектор между вертикальными черточками r = |r| .
 Графически вектор изображают стрелкой (рис. 1),

Длина которой в заданном масштабе равна его модулю, а направление совпадает с направлением вектора.
Два вектора равны, если совпадают их модули и направления.
 Векторные величины складываются геометрически (по правилу векторной алгебры).
 Нахождение векторной суммы по данным составляющим векторам называется сложением векторов.
 Сложение двух векторов производят по правилу параллелограмма или треугольника. Суммарный вектор
с = a + b
равен диагонали параллелограмма, построенного на векторах a и b . Модуль его
с = √{a 2 + b 2 − 2abcosα} (рис. 2).


При α = 90°, с = √{a 2 + b 2 } − теорема Пифагора.

Тот же вектор c можно получить по правилу треугольника, если из конца вектора a отложить вектор b . Замыкающий вектор c (соединяющий начало вектора a и конец вектора b ) является векторной суммой слагаемых (составляющих векторов a и b ).
 Результирующий вектор находят как замыкающую той ломанной линии, звеньями которой являются составляющие векторы (рис. 3).


Пример 3 .
 Сложить две силы F 1 = 3 Н и F 2 = 4 Н, векторы F 1 и F 2 составляют с горизонтом углы α 1 = 10° и α 2 = 40°, соответственно
F = F 1 + F 2 (рис. 4).

 Результатом сложения этих двух сил является сила, называемая равнодействующей. Вектор F направлен по диагонали параллелограмма, построенного на векторах F 1 и F 2 , как сторонах, и по модулю равен ее длине.
 Модуль вектора F находим по теореме косинусов
F = √{F 1 2 + F 2 2 + 2F 1 F 2 cos(α 2 − α 1)},
F = √{3 2 + 4 2 + 2 × 3 × 4 × cos(40° − 10°)} ≈ 6,8 H.
Если
(α 2 − α 1) = 90°, то F = √{F 1 2 + F 2 2 }.

Угол, который вектор F составляет с осью Ox, находим по формуле
α = arctg((F 1 sinα 1 + F 2 sinα 2)/(F 1 cosα 1 + F 2 cosα 2)),
α = arctg((3.0,17 + 4.0,64)/(3.0,98 + 4.0,77)) = arctg0,51, α ≈ 0,47 рад.

Проекция вектора a на ось Ox (Oy) − скалярная величина, зависящая от угла α между направлением вектора a и оси Ox (Oy). (рис. 5)


 Проекции вектора a на оси Ox и Oy прямоугольной системы координат. (рис. 6)


 Чтобы не допустить ошибок при определении знака проекции вектора на ось, полезно запомнить следующее правило: если направление составляющей совпадает с направлением оси, то проекция вектора на эту ось положительна, если же направление составляющей противоположно направлению оси, то проекция вектора отрицательна. (рис. 7)


 Вычитание векторов − это сложение, при котором к первому вектору прибавляется вектор, численно равный второму, противоположно направленный
a − b = a + (−b) = d (рис. 8).

 Пусть надо из вектора a вычесть вектор b , их разность − d . Чтобы найти разность двух векторов, надо к вектору a прибавить вектор (−b ), то есть вектором d = a − b будет вектор, направленный от начала вектора a к концу вектора (−b ) (рис. 9).

 В параллелограмме, построенном на векторах a и b как сторонах, одна диагональ c имеет смысл суммы, а другая d − разности векторов a и b (рис. 9).
 Произведение вектора a на скаляр k равно вектору b = ka , модуль которого в k раз больше модуля вектора a , а направление совпадает с направлением a при положительном k и противоположно ему при отрицательном k.

Пример 4 .
 Определить импульс тела массой 2 кг, движущегося со скоростью 5 м/с. (рис. 10)

Импульс тела p = mv ; p = 2 кг.м/с = 10 кг.м/с и направлен в сторону скорости v .

Пример 5 .
 Заряд q = −7,5 нКл помещен в электрическое поле с напряженностью E = 400 В/м. Найти модуль и направление силы, действующей на заряд.

Сила равна F = qE . Так как заряд отрицательный, то вектор силы направлен в сторону, противоположную вектору E . (рис. 11)


Деление вектора a на скаляр k равнозначно умножению a на 1/k.
Скалярным произведением векторов a и b называют скаляр «c», равный произведению модулей этих векторов на косинус угла между ними
(a.b) = (b.a) = c,
с = ab.cosα (рис. 12)


Пример 6 .
 Найти работу постоянной силы F = 20 Н, если перемещение S = 7,5 м, а угол α между силой и перемещением α = 120°.

Работа силы равна по определению скалярному произведению силы и перемещения
A = (F.S) = FScosα = 20 H × 7,5 м × cos120° = −150 × 1/2 = −75 Дж.

Векторным произведением векторов a и b называют вектор c , численно равный произведению модулей векторов a и b, умноженных на синус угла между ними:
с = a × b = ,
с = ab × sinα.
 Вектор c перпендикулярен плоскости, в которой лежат векторы a и b , причем его направление связано с направлением векторов a и b правилом правого винта (рис. 13).


Пример 7 .
 Определить силу, действующую на проводник длиной 0,2 м, помещенный в магнитном поле, индукция которого 5 Тл, если сила тока в проводнике 10 А и он образует угол α = 30° с направлением поля.

Сила Ампера
dF = I = Idl × B или F = I(l)∫{dl × B},
F = IlBsinα = 5 Тл × 10 А × 0,2 м × 1/2 = 5 Н.

Рассмотрите решение задач .
 1. Как направлены два вектора, модули которых одинаковы и равны a, если модуль их суммы равен: а) 0; б) 2а; в) а; г) a√{2}; д) a√{3}?

Решение .
 а) Два вектора направлены вдоль одной прямой в противоположные стороны. Сумма этих векторов равна нулю.

 б) Два вектора направлены вдоль одной прямой в одном направлении. Сумма этих векторов равна 2a.

 в) Два вектора направлены под углом 120° друг к другу. Сумма векторов равна a. Результирующий вектор находим по теореме косинусов:

a 2 + a 2 + 2aacosα = a 2 ,
cosα = −1/2 и α = 120°.
 г) Два вектора направлены под углом 90° друг к другу. Модуль суммы равен
a 2 + a 2 + 2aacosα = 2a 2 ,
cosα = 0 и α = 90°.

 д) Два вектора направлены под углом 60° друг к другу. Модуль суммы равен
a 2 + a 2 + 2aacosα = 3a 2 ,
cosα = 1/2 и α = 60°.
Ответ : Угол α между векторами равен: а) 180°; б) 0; в) 120°; г) 90°; д) 60°.

2. Если a = a 1 + a 2 ориентации векторов, то, что можно сказать о взаимной ориентации векторов a 1 и a 2 , если: а) a = a 1 + a 2 ; б) a 2 = a 1 2 + a 2 2 ; в) a 1 + a 2 = a 1 − a 2 ?

Решение .
 а) Если сумма векторов находится как сумма модулей этих векторов, то вектора направлены вдоль одной прямой, параллельно друг другу a 1 ||a 2 .
 б) Если вектора направлены под углом друг к другу, то их сумма находится по теореме косинусов для параллелограмма
a 1 2 + a 2 2 + 2a 1 a 2 cosα = a 2 ,
cosα = 0 и α = 90°.
вектора перпендикулярны друг другу a 1 ⊥ a 2 .
 в) Условие a 1 + a 2 = a 1 − a 2 может выполниться, в случае если a 2 − нулевой вектор, тогда a 1 + a 2 = a 1 .
Ответы . а) a 1 ||a 2 ; б) a 1 ⊥ a 2 ; в) a 2 − нулевой вектор.

3. Две силы по 1,42 H каждая приложены к одной точке тела под углом 60° друг к другу. Под каким углом надо приложить к той же точке тела две силы по 1,75 H каждая, чтобы действие их уравновешивало действие первых двух сил?

Решение.
 По условию задачи две силы по 1,75 Н уравновешивают две силы по 1,42 Н. Это возможно, если равны модули результирующих векторов пар сил. Результирующий вектор определим по теореме косинусов для параллелограмма. Для первой пары сил:
F 1 2 + F 1 2 + 2F 1 F 1 cosα = F 2 ,
для второй пары сил, соответственно
F 2 2 + F 2 2 + 2F 2 F 2 cosβ = F 2 .
Приравняв левые части уравнений
F 1 2 + F 1 2 + 2F 1 F 1 cosα = F 2 2 + F 2 2 + 2F 2 F 2 cosβ.
Найдем искомый угол β между векторами
cosβ = (F 1 2 + F 1 2 + 2F 1 F 1 cosα − F 2 2 − F 2 2)/(2F 2 F 2).
После вычислений,
cosβ = (2.1,422 + 2.1,422.cos60° − 2.1,752)/(2.1,752) = −0,0124,
β ≈ 90,7°.

Второй способ решения .
 Рассмотрим проекцию векторов на ось координат ОХ (рис.).

 Воспользовавшись соотношением между сторонами в прямоугольном треугольнике, получим
2F 1 cos(α/2) = 2F 2 cos(β/2) ,
откуда
cos(β/2) = (F 1 /F 2)cos(α/2) = (1,42/1,75) × cos(60/2) и β ≈ 90,7°.

4. Вектор a = 3i − 4j . Какова должна быть скалярная величина c, чтобы |ca | = 7,5?
Решение .
ca = c(3i − 4j ) = 7,5
Модуль вектора a будет равен
a 2 = 3 2 + 4 2 , и a = ±5,
тогда из
c.(±5) = 7,5,
найдем, что
c = ±1,5.

5. Векторы a 1 и a 2 выходят из начала координат и имеют декартовы координаты концов {6, 0} и {1, 4}, соответственно. Найдите вектор a 3 такой, что: а) a 1 + a 2 + a 3 = 0; б) a 1 a 2 + a 3 = 0.

Решение .
 Изобразим векторы в декартовой системе координат (рис.)

 а) Результирующий вектор вдоль оси Ox равен
a x = 6 + 1 = 7.
Результирующий вектор вдоль оси Oy равен
a y = 4 + 0 = 4.
Чтобы сумма векторов была равна нулю, необходимо, чтобы выполнялось условие
a 1 + a 2 = −a 3 .
Вектор a 3 по модулю будет равен суммарному вектору a 1 + a 2 , но направлен в противоположную ему сторону. Координата конца вектора a 3 равна {−7, −4}, а модуль
a 3 = √{7 2 + 4 2 } = 8,1.

Б) Результирующий вектор вдоль оси Ox равен
a x = 6 − 1 = 5,
а результирующий вектор вдоль оси Oy
a y = 4 − 0 = 4.
При выполнении условия
a 1 a 2 = −a 3 ,
вектор a 3 будет иметь координаты конца вектора a x = –5 и a y = −4, а модуль его равен
a 3 = √{5 2 + 4 2 } = 6,4.

6. Посыльный проходит 30 м на север, 25 м на восток, 12 м на юг, а затем в здании поднимается на лифте на высоту 36 м. Чему равны пройденный им путь L и перемещение S?

Решение .
 Изобразим ситуацию, описанную в задаче на плоскости в произвольном масштабе (рис.).

Конец вектора OA имеет координаты 25 м на восток, 18 м на север и 36 вверх (25; 18; 36). Путь, пройденный человеком равен
L = 30 м + 25 м + 12 м +36 м = 103 м.
Модуль вектора перемещения найдем по формуле
S = √{(x − x o) 2 + (y − y o) 2 + (z − z o) 2 },
где x o = 0, y o = 0, z o = 0.
S = √{25 2 + 18 2 + 36 2 } = 47,4 (м).
Ответ : L = 103 м, S = 47,4 м.

7. Угол α между двумя векторами a и b равен 60°. Определите длину вектора с = a + b и угол β между векторами a и c . Величины векторов равны a = 3,0 и b = 2,0.

Решение .
 Длину вектора, равного сумме векторов a и b определим воспользовавшись теоремой косинусов для параллелограмма (рис.).

с = √{a 2 + b 2 + 2abcosα}.
После подстановки
с = √{3 2 + 2 2 + 2.3.2.cos60°} = 4,4.
Для определения угла β воспользуемся теоремой синусов для треугольника ABC:
b/sinβ = a/sin(α − β).
При этом следует знать, что
sin(α − β) = sinαcosβ − cosαsinβ.
 Решая простое тригонометрическое уравнение, приходим к выражению
tgβ = bsinα/(a + bcosα),
следовательно,
β = arctg(bsinα/(a + bcosα)),
β = arctg(2.sin60/(3 + 2.cos60)) ≈ 23°.
 Сделаем проверку, воспользовавшись теоремой косинусов для треугольника:
a 2 + c 2 − 2ac.cosβ = b 2 ,
откуда
cosβ = (a 2 + c 2 − b 2)/(2ac)
и
β = arccos((a 2 + c 2 − b 2)/(2ac)) = arccos((3 2 + 4,4 2 − 2 2)/(2.3.4,4)) = 23°.
Ответ : c ≈ 4,4; β ≈ 23°.

Решите задачи .
 8. Для векторов a и b , определенных в примере 7, найдите длину вектора d = a − b угол γ между a и d .

9. Найдите проекцию вектора a = 4,0i + 7,0j на прямую, направление которой составляет угол α = 30° с осью Ox. Вектор a и прямая лежат в плоскости xOy.

10. Вектор a составляет угол α = 30° с прямой АВ, a = 3,0. Под каким углом β к прямой АВ нужно направить вектор b (b = √{3}), чтобы вектор с = a + b был параллелен АВ? Найдите длину вектора c .

11. Заданы три вектора: a = 3i + 2j − k ; b = 2i − j + k ; с = i + 3j . Найдите а) a + b ; б) a + c ; в) (a, b) ; г) (a, c)b − (a, b)c .

12. Угол между векторами a и b равен α = 60°, a = 2,0, b = 1,0. Найдите длины векторов с = (a, b)a + b и d = 2b − a/2 .

13. Докажите, что векторы a и b перпендикулярны, если a = {2, 1, −5} и b = {5, −5, 1}.

14. Найдите угол α между векторами a и b , если a = {1, 2, 3}, b = {3, 2, 1}.

15. Вектор a составляет с осью Ox угол α = 30°, проекция этого вектора на ось Oy равна a y = 2,0. Вектор b перпендикулярен вектору a и b = 3,0 (см. рис.).

Вектор с = a + b . Найдите: a) проекции вектора b на оси Ox и Oy; б) величину c и угол β между вектором c и осью Ox; в) (a, b); г) (a, c).

Ответы :
 9. a 1 = a x cosα + a y sinα ≈ 7,0.
 10. β = 300°; c = 3,5.
 11. а) 5i + j; б) i + 3j − 2k; в) 15i − 18j + 9 k.
 12. c = 2,6; d = 1,7.
 14. α = 44,4°.
 15. а) b x = −1,5; b y = 2,6; б) с = 5; β ≈ 67°; в) 0; г) 16,0.
 Изучая физику, Вы имеете большие возможности продолжить свое образование в техническом ВУЗе. Для этого потребуется параллельное углубление знаний по математике, химии, языку, реже другие предметы. Победитель республиканской олимпиады, Савич Егор, заканчивает один из факультетов МФТИ, на котором, большие требования предъявляются к знаниям по химии. Если требуется помощь в ГИА по химии , то обращайтесь к профессионалам, Вам точно окажут квалифицированную и своевременную помощь.

Смотрите еще:

Величинам (строго говоря - тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.

В большинстве случаев термин вектор употребляется в физике для обозначения вектора в так называемом «физическом пространстве», то есть в обычном трёхмерном пространстве классической физики или в четырехмерном пространстве-времени в современной физике (в последнем случае понятие вектора и векторной величины совпадают с понятием 4-вектора и 4-векторной величины).

Употребление словосочетания «векторная величина» практически исчерпывается этим. Что же касается употребления термина «вектор», то оно, несмотря на тяготение по умолчанию к этому же полю применимости, в большом количестве случаев всё же весьма далеко выходит за такие рамки. Об этом см. ниже.

Энциклопедичный YouTube

    1 / 3

    Урок 8. Векторные величины. Действия над векторами.

    ВЕКТОР - что это такое и зачем он нужен, объяснение

    ИЗМЕРЕНИЕ ФИЗИЧЕСКИХ ВЕЛИЧИН 7 класс | Романов

    Субтитры

Употребление терминов вектор и векторная величина в физике

В целом в физике понятие вектора практически полностью совпадает с таковым в математике. Однако есть терминологическая специфика, связанная с тем, что в современной математике это понятие несколько излишне абстрактно (по отношению к нуждам физики).

В математике, произнося «вектор» понимают скорее вектор вообще, то есть любой вектор любого сколько угодно абстрактного линейного пространства любой размерности и природы, что, если не прилагать специальных усилий, может приводить даже к путанице (не столько, конечно, по существу, сколько по удобству словоупотребления). Если же необходимо конкретизировать, в математическом стиле приходится или говорить довольно длинно («вектор такого-то и такого-то пространства»), или иметь в виду подразумеваемое явно описанным контекстом.

В физике же практически всегда речь идет не о математических объектах (обладающих теми или иными формальными свойствами) вообще, а об определенной их конкретной («физической») привязке. Учитывая эти соображения конкретности с соображениями краткости и удобства, можно понять, что терминологическая практика в физике заметно отличается от математической. Однако она не входит с последней в явное противоречие. Этого удается достичь несколькими простыми «приемами». Прежде всего, к ним относится соглашение об употребление термина по умолчанию (когда контекст особо не оговаривается). Так, в физике, в отличие от математики, под словом вектор без дополнительных уточнений обычно понимается не «какой-то вектор любого линейного пространства вообще», а прежде всего вектор, связанный с «обычным физическим пространством» (трехмерным пространством классической физики или четырехмерным пространством-временем физики релятивистской). Для векторов же пространств, не связанных прямо и непосредственно с «физическим пространством» или «пространством-временем», как раз применяют специальные названия (иногда включающие слово «вектор», но с уточнением). Если вектор некоторого пространства, не связанного прямо и непосредственно с «физическим пространством» или «пространством-временем» (и которое трудно сразу как-то определенно охарактеризовать), вводится в теории, он часто специально описывается как «абстрактный вектор».

Всё сказанное еще в большей степени, чем к термину «вектор», относится к термину «векторная величина». Умолчание в этом случае еще жестче подразумевает привязку к «обычному пространству» или пространству-времени, а употребление по отношению к элементам абстрактных векторных пространств скорее практически не встречается, по крайней мере, такое применение видится редчайшим исключением (если вообще не оговоркой).

В физике векторами чаще всего, а векторными величинами - практически всегда - называют векторы двух сходных между собою классов:

Примеры векторных физических величин: скорость , сила , поток тепла.

Генезис векторных величин

Каким образом физические «векторные величины» привязаны к пространству? Прежде всего, бросается в глаза то, что размерность векторных величин (в том обычном смысле употребления этого термина, который разъяснен выше) совпадает с размерностью одного и того же «физического» (и «геометрического») пространства, например, пространство трехмерно и вектор электрического поля трехмерен. Интуитивно можно заметить также, что любая векторная физическая величина, какую бы туманную связь она не имела с обычной пространственной протяженностью, тем не менее имеет вполне определенное направление именно в этом обычном пространстве.

Однако оказывается, что можно достичь и гораздо большего, прямо «сведя» весь набор векторных величин физики к простейшим «геометрическим» векторам, вернее даже - к одному вектору - вектору элементарного перемещения, а более правильно было бы сказать - произведя их всех от него.

Эта процедура имеет две различные (хотя по сути детально повторяющие друг друга) реализации для трехмерного случая классической физики и для четырехмерной пространственно-временной формулировки, обычной для современной физики.

Классический трехмерный случай

Будем исходить из обычного трехмерного «геометрического» пространства, в котором мы живем и можем перемещаться.

В качестве исходного и образцового вектора возьмем вектор бесконечно малого перемещения. Довольно очевидно, что это обычный «геометрический» вектор (как и вектор конечного перемещения).

Заметим теперь сразу, что умножение вектора на скаляр всегда дает новый вектор. То же можно сказать о сумме и разности векторов. В этой главе мы не будем делать разницы между полярными и аксиальными векторами , поэтому заметим, что и векторное произведение двух векторов дает новый вектор.

Также новый вектор дает дифференцирование вектора по скаляру (поскольку такая производная есть предел отношения разности векторов к скаляру). Это можно сказать дальше и о производных всех высших порядков. То же верно по отношению к интегрированию по скалярам (времени, объему).

Теперь заметим, что, исходя из радиус-вектора r или из элементарного перемещения dr , мы легко понимаем, что векторами являются (поскольку время - скаляр) такие кинематические величины, как

Из скорости и ускорения, умножением на скаляр (массу), появляются

Поскольку нас сейчас интересуют и псевдовекторы, заметим, что

  • с помощью формулы силы Лоренца напряженность электрического поля и вектор магнитной индукции привязаны к векторам силы и скорости.

Продолжая эту процедуру, мы обнаруживаем, что все известные нам векторные величины оказываются теперь не только интуитивно, но и формально, привязаны к исходному пространству. А именно все они в некотором смысле являются его элементами, так как выражаются в сущности как линейные комбинации других векторов (со скалярными множителями, возможно, и размерными, но скалярными, а поэтому формально вполне законными).

Современный четырехмерный случай

Ту же процедуру можно проделать исходя из четырехмерного перемещения. Оказывается, что все 4-векторные величины «происходят» от 4-перемещения, являясь поэтому в некотором смысле такими же векторами пространства-времени, как и само 4-перемещение.

Виды векторов применительно к физике

  • Полярный или истинный вектор - обычный вектор.
  • Аксиальный вектор (псевдовектор) - на самом деле не является настоящим вектором, однако формально почти не отличается от последнего, за исключением того, что меняет направление на противоположное при изменении ориентации системы координат (например, при зеркальном отражении системы координат). Примеры псевдовекторов: все величины, определяемые через векторное произведение двух полярных векторов.
  • Для сил выделяется несколько различных

При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых значений, более точно, которые полностью определяются при помощи числа, полученного в результате их измерения однородной величиной, принятой за единицу. Такие величины называются скалярными или, короче, скалярами. Ска­лярными величинами, например, являются длина, площадь, объ­ем, время, масса, температура тела, плотность, работа, электроёмкость и др. Так как скалярная величина определяется числом (положительным или отрицательным), то ее можно откладывать на соответствующей координатной оси. Так например, часто стро­ят ось времени, температуры, длины (пройденного пути) и другие.

Помимо скалярных величин, в различных задачах встречаются величины, для определения ко­торых, кроме числового значения, необходимо знать также их направление в пространстве. Такие величины называются векторными . Физиче­скими примерами векторных величин могут служить смещение материальной точки, двигающейся в пространстве, скорость и ускорение этой точки, а также действующая на нее сила, напряженность электрического или магнитного поля. Век­торные величины используются, например, и в климатологии. Рассмотрим простой пример из климатологии. Если мы скажем, что ветер дует со скоростью 10 м/с, то тем самым введем скаляр­ную величину скорости ветра, но если мы скажем, что дует се­верный ветер со скоростью 10 м/с, то в этом случае скорость ветра будет уже векторной величиной.

Векторные величины изображаются с помощью векторов.

Для геометрического изображения векторных величин слу­жат направленные отрезки, то есть отрезки, имеющие фикси­рованное направление в пространстве. При этом длина отрез­ка равна числовому значению векторной величины, а его на­правление совпадает с направлением векторной величины. Направленный отрезок, характеризующий данную векторную величину, называют геометрическим вектором или просто вектором.

Понятие вектора играет большую роль как в математике, так и во многих областях физики и механики. Многие физические величины могут быть представлены при помощи векторов, и это представление очень часто способствует обобщению и упрощению формул и результатов. Часто векторные величины и векторы, их изображающие, отождествляются друг с другом: так, например, говорят, что сила (или скорость) есть вектор.

Элементы векторной алгебры применяются в таких дисциплинах как: 1) электрические машины; 2) автоматизированный электропривод; 3) электроосвещение и облучение; 4) неразвлетвлённые цепи переменного тока; 5) прикладная механика; 6) теоретическая механика; 7) физика; 8) гидравлика:9) детали машин; 10) сопромат; 11) управление; 12) химия; 13) кинематика; 14) статика и др.

2. Определение вектора. Отрезок прямой задается дву­мя равноправными точками -его концами. Но можно рассматривать направленный отрезок, определяемый упо­рядоченной парой точек. Про эти точки известно, какая из них первая (начало), а какая вторая (конец).

Под направленным отрезком понимают упорядоченную пару точек, первая из которых - точка А - называется его началом, а вторая - В - его концом.

Тогда под вектором понимается в простейшем случае сам направленный отрезок, а в других случаях различные векторы - это разные классы эквивалентности направленных отрезков, определяемые неким конкретным отношением эквивалентности. Причем отношение эквивалентности может быть разным, определяя тип вектора («свободный», «фиксированный» и т.д.). Проще говоря, внутри класса эквивалентности все входящие в него направленные отрезки рассматриваются как совершенно равные, и каждый может равно представлять весь класс.

Большую роль играют векторы в изучении бесконечно малых трансформаций пространства.

Определение 1. Направленный отрезок (или, что то же, упорядоченную пару точек) мы будем называть вектором . Направление на отрезке принято отмечать стрелкой. Над буквенным обозначением вектора при письме ста­вится стрелка, например: (при этом буква, соответст­вующая началу вектора, обязательно ставится впереди). В книгах часто буквы, обозначающие вектор, набираются полужирным шрифтом, например: а .

К векторам будем относить и так называемый нулевой вектор, у которого начало и конец совпадают.

Вектор, начало которого совпадает с его концом, называют нулевым. Нулевой вектор обозначается или просто 0.

Расстояние между началом и концом вектора называ­ется его длиной (а также модулем и абсолютной величи­ной). Длина вектора обозначается | | или | |. Длиной вектора, или модулем вектора, называют длину соответствующего направленного отрезка: | | = .

Векторы называются коллинеарными , если они распо­ложены на одной прямой или на параллельных прямых, короче говоря, если существует прямая, которой они параллельны.

Векторы называются компланарными , если существует плоскость, которой они параллельны, их можно изобразить векторами, лежащими на одной плоскости. Нулевой вектор считается коллинеарным любому вектору, так как он не имеет определенного направления. Длина его, разумеется, равна нулю. Очевидно, любые два вектора компланарны; но, конечно, не каждые три вектора в пространстве компланарны. Так как векторы, параллельные друг другу, параллельны одной и той же плоскости, то коллинеарные векторы подавно компланарны. Разумеется, обратное неверно: компланарные векторы могут быть и не коллинеарными. В силу принятого выше условия нулевой вектор коллинеарен со всяким вектором и компланарен со всякой парой векторов, т.е. если среди трёх векторов хотя бы один нулевой, то они компланарны.

2) Слово «компланарные» означает в сущности: «имеющие общую плос­кость», т. е. «расположенные в одной плоскости». Но так как речь здесь идет о свободных векторах, которые можно переносить (не изменяя длины и направ­ления) произвольным образом, мы должны называть компланарными векторы, параллельные одной и той же плоскости, ибо в этом случае их можно пере­нести так, чтобы они оказались расположенными в одной плоскости.

Для сокращения речи условимся в одном термине: если несколько свободных векторов параллельны одной и той же плоскости, то мы будем говорить, что они компланарны. В частности, два вектора всегда компланарны; чтобы в этом убе­диться, достаточно отложить их от одной и той же точки. Ясно, далее, что направление плоскости, в которой параллельны два дан­ных вектора, вполне определено, если эти два вектора не парал­лельны между собою. Любую плоскость, которой параллельны данные компланарные векторы, мы будем называть просто пло­скостью данных векторов.

Определение 2. Два вектора называются равными , если они коллинеарны, одинаково направлены и имеют равные длины.

Необходимо всегда помнить, что равенство длин двух векторов ещё не означает равенства этих векторов.

По самому смыслу определения, два вектора, порознь равные третьему, равны между собой. Очевидно, все нулевые векторы равны между собой.

Из этого определения непосредственно вытекает, что, выбрав любую точку А", мы может построить (и притом только один) вектор А" В", равный некоторому заданному вектору , или, как говорят, перенести вектор в точку А" .

Замечание . Для векторов нет понятий «больше» или «меньше», т.е. они равны или не равны.

Вектор, длина которого равна единице, называется единичным вектором и обозначается через е. Единичный вектор, направление которого совпадает с направлением вектора а, называется ортом вектора и обозначается а .

3. О другом определении вектора . Заметим, что понятие равенства векторов существенно отличается от понятия равенства, например, чисел. Каждое число равно только самому себе, иначе говоря, два равных числа при всех обстоятельствах могут рассматриваться как одно и то же число. С векторами, как мы видим, дело обстоит по-другому: в силу определения существуют различные, но равные между собой векторы. Хотя в большинстве случаев у нас не будет необходимости различать их между собой, вполне может оказаться, что в какой-то момент нас будет интересовать именно вектор , а не другой, равный ему вектор А"В".

Для того чтобы упростить понятие равенства векторов (и снять некоторые связанные с ним трудности), иногда идут на усложнение определения вектора. Мы не будем пользоваться этим усложненным определением, но сформулируем его. Чтобы не путать, мы будем писать «Вектор» (с большой буквы) для обозначения определяемого ниже понятия.

Определение 3 . Пусть дан направленный отрезок. Множество всех направленных отрезков, равных данному в смысле определения 2, называется Вектором.

Таким образом, каждый направленный отрезок определяет Век­тор. Легко заметить, что два направленных отрезка определяют один и тот же Вектор тогда и только тогда, когда они равны. Для Векторов, как и для чисел, равенство означает совпадение: два Вектора равны в том и только в том случае, когда это один и тот же Век­тор.

При параллельном переносе пространства точка и ее образ сос­тавляют упорядоченную пару точек и определяют направленный отрезок, причем все такие направленные отрезки равны в смысле определения 2. Поэтому параллельный перенос пространства можно отождествить с Вектором, составленным из всех этих направленных отрезков.

Из начального курса физики хорошо известно, что сила может быть изображена направленным отрезком. Но она не может быть изображена Вектором, поскольку силы, изображаемые равными нап­равленными отрезками, производят, вообще говоря, различные дейст­вия. (Если сила действует на упругое тело, то изображающий ее направленный отрезок не может быть перенесён даже вдоль той прямой, на которой он лежит.)

Это только одна из причин, по которым наряду с Векторами, т. е. множествами (или, как говорят, классами) равных направлен­ных отрезков, приходится рассматривать и отдельных представителей этих классов. При этих обстоятельствах применение определения 3 усложняется большим числом оговорок. Мы будем придерживаться определения 1, причем по общему смыслу всегда будет ясно, идет ли речь о вполне определенном векторе, или на его место может быть подставлен любой, ему равный.

В связи с определением вектора стоит разъяснить значение не­которых слов, встречающихся в литературе.

Векторы мощный инструмент математики и физики. На языке векторов формулируются основные законы механики и электродинамики. Чтобы понимать физику, нужно научиться работать с векторами.

Данная глава содержит подробное изложение материала, необходимого для того, чтобы приступить к изучению механики:

! Сложение векторов

! Умножение скаляра на вектор

! Угол между векторами

! Проекция вектора на ось

! Векторы и координаты на плоскости

! Векторы и координаты в пространстве

! Скалярное произведение векторов

К тексту данного приложения полезно будет вернуться на первом курсе при изучении аналитической геометрии и линейной алгебры чтобы осознать, например, откуда берутся аксиомы линейного и евклидова пространства.

7.1 Скалярные и векторные величины

В процессе изучения физики мы встречаем два типа величин скалярные и векторные.

Определение. Скалярная величина, или скаляр это физическая величина, для задания которой (в подходящих единицах измерения) достаточно одного числа.

Скаляров очень много в физике. Масса тела равна 3 кг, температура воздуха равна 10 С, напряжение в сети равно 220 В. . . Во всех этих случаях интересующая нас величина задаётся одним-единственным числом. Следовательно, масса, температура и электрическое напряжение являются скалярами.

Но скаляр в физике это не просто число. Скаляр есть число, снабжённое размерностью1 . Так, задавая массу, мы не можем написать m = 3; надо указать единицу измерения например, m = 3 кг. И если в математике мы можем сложить числа 3 и 220, то в физике сложить 3 килограмма и 220 вольт не получится: мы имеем право складывать лишь те скаляры, которые обладают одинаковой размерностью (массу с массой, напряжение с напряжением и т. д.).

Определение. Векторная величина, или вектор это физическая величина, характеризуемая: 1) неотрицательным скаляром; 2) направлением в пространстве. При этом скаляр называется модулем вектора, или его абсолютной величиной.

Предположим, что автомобиль движется со скоростью 60 км/ч. Но ведь это неполная информация о движении, не так ли? Может оказаться важным и то, куда едет автомобиль, в каком именно направлении. Поэтому важно знать не только модуль (абсолютную величину) скорости автомобиля в данном случае это 60 км/ч но и её направление в пространстве. Значит, скорость является вектором.

Другой пример. Допустим, на полу лежит кирпич массой 1 кг. На кирпич действует сила 100 Н (это модуль силы, или её абсолютная величина). Как будет двигаться кирпич? Вопрос лишён смысла до тех пор, пока не указано направление действия силы. Если сила действует вверх, то и кирпич будет двигаться вверх. Если сила действует горизонтально, то и кирпич поедет горизонтально. А если сила действует вертикально вниз, то кирпич вообще не сдвинется с места он будет только вжиматься в пол. Мы видим, таким образом, что сила также является вектором.

Векторная величина в физике также обладает размерностью. Размерность вектора это размерность его модуля.

Мы будем обозначать векторы буквами со стрелкой. Так, вектор скорости можно обозначить

через ~v, а вектор силы через F . Собственно, вектор это и есть стрелка или, как ещё говорят, направленный отрезок (рис. 7.1 ).

Рис. 7.1. Вектор ~v

Начальная точка стрелки называется началом вектора, а конечная точка (остриё) стрелки

концом вектора. В математике вектор с началом в точке A и концом в точке B обозначается

также AB; нам такое обозначение тоже иногда понадобится.

Вектор, начало и конец которого совпадают, называется нулевым вектором (или нулём) и

обозначается ~ . Нулевой вектор есть попросту точка; он не имеет определённого направления.

Длина нулевого вектора, разумеется, равна нулю.

1 Попадаются и безразмерные скаляры: коэффициент трения, коэффициент полезного действия, показатель преломления среды. . . Так, показатель преломления воды равен 1;33 это исчерпывающая информация, никакой размерностью данное число не обладает.

Рисование стрелок полностью решает задачу графического представления векторных величин. Направление стрелки указывает направление данного вектора, а длина стрелки в подходящем масштабе есть модуль этого вектора.

Предположим, например, что два автомобиля двигаются навстречу друг другу со скоростями u = 30 км/ч и v = 60 км/ч. Тогда векторы ~u и ~v скоростей автомобилей будут иметь противоположные направления, причём длина вектора ~v в два раза больше (рис. 7.2 ).

Рис. 7.2. Вектор ~v вдвое длиннее

Как вы уже поняли, буква без стрелки (например, u или v в предыдущем абзаце) обозначает модуль соответствующего вектора. В математике модуль вектора ~v обычно обозначается j~vj, но физики, если ситуация позволяет, предпочтут именно v букву без стрелки.

Векторы называются коллинеарными, если они расположены на одной прямой или на параллельных прямых.

Пусть имеются два коллинеарных вектора. Если их направления совпадают, то векторы называются сонаправленными; если же их направления различны, то векторы называются противоположно направленными. Так, выше на рис. 7.2 векторы ~u и ~v являются противоположно направленными.

Два вектора называются равными, если они сонаправлены и имеют равные модули (рис. 7.3 ).

Рис. 7.3. Векторы ~a и b равны: ~a = b

Таким образом, равенство векторов отнюдь не означает непременного совпадения их начал и концов: мы можем переносить вектор параллельно самому себе, и при этом получится вектор, равный исходному. Такой перенос постоянно применяется в тех случаях, когда желательно свести начала векторов в одну точку например, при нахождении суммы или разности векторов. К рассмотрению операций над векторами мы и переходим.