Влияние на фитопланктон. Старт в науке

Влияние света и температуры на фитопланктон.

По данным исследований Константинова температура воды и достигающая поверхности водоема солнечная радиация - наиболее важные факторы, определяющие энергетику водорослей и их способность к новообразованию органического вещества (ОВ). Для водорослей как представителей автотрофных организмов свет является фактором первостепенного значения. Он определяет их фотосинтез, рост и развитие. В процессе адаптации к изменению световых условий фотосинтетический аппарат растения настраивается так, чтобы наилучшим образом использовать лучистую энергию.

Константинов доказал, что скорость поглощения солнечной радиации и степень проникновения света в воду зависят от высоты солнца, меняющегося с географической широтой, сезоном года и временем суток, от количества растворенных в воде органических веществ, цветности воды, облачности, состояния поверхности водоема. В отсутствие ветра отражается 5 % падающей радиации на поверхность воды, при легком и сильном ветре - 15 % и 30 % соответственно. Интенсивность света с глубиной убывает. В озерах и водохранилищах с прозрачностью 1-2 м на глубину 1 м проникает не более 5-10 % энергии поступившей радиации, глубже 2 м - 0,015-0,04 Дж/см 2 - мин.

М. Р. Гусев , считает, что сине-зеленые водоросли менее требовательны к свету, чем другие альгологические группы. Свет определяет фотосинтез, рост и развитие водорослей. Потребности в освещенности у разных организмов фитопланктона видоспецифичны. Требовательными к свету считают зеленые и сине-зеленые водоросли. Для осуществления максимального фотосинтеза им требуется в 1,2-2 раза меньше интенсивности солнечной радиации, чем для диатомовых и зеленых водорослей. Кузнецов отмечает, что диатомеи менее требовательны к освещению, избегают яркого поверхностного слоя, обитают на глубине 2-3 м в малопрозрачных водоемах и 15-20 м в прозрачных водах морей. Установлено, что у зеленых 17 водорослей световое насыщение наступает при 5-7 тыс. лк, у диатомовых - при 10-20 тыс. лк, динофлагеллят - 25-30 тыс. лк. Это противоречит факту, что диатомовые водоросли малотребовательны к свету. «Цветение» диатомовых в озерах часто происходит, когда световые условия очень изменчивы, а уровень радиации низкий, например, в течение весеннего или осеннего цикла перемешивания, когда клетки циркулируют по всему водному столбу. Как отмечает В. Н. Гопоненко , световое насыщение наступает у одноклеточных водорослей при 6-8 тыс. лк. В культурах водорослей, выращенных при освещенности 1 тыс. лк световое насыщение наступает у зеленых - при 5-7,5 тыс. лк, у диатомовых - 1-2 тыс. лк, и у перидиниевых - при 25-30 тыс. лк. По данным

Н. П. Калиниченко , для диатомовых водорослей Stephanodis cushantzschii оптимальная освещенность 2,6 тыс. лк при световом дне 12 и 16 час, для Asterionellaformosa - 5 тыс. лк при той же экспозиции.

В период наблюдения за водоемом, верхнее Покровское озеро, проводился замер температуры воды и pH с интервалом каждые 20 дней. Полученные данные представлены в таблице 6, а так же проанализированы и составлены диаграммы по некоторым представителям зеленых и сине-зеленых водорослей, с целью показать в какой сезон они достигают максимальной численности.

Таблица 6 - температурный режим и pH показатель в 2013-2014 год.

Из рисунка 3 видно, что зеленая водоросль (Ankistrodesmus acicularis) преобладает в летний период, что составляет 51 %, тогда как в зимний период ее численность составляет 2 %. Такие показатели связанны с тем, что в летний период средняя температура составила 26,6, что благоприятно сказывается на их развитии.

На рисунке 4 другой представитель зеленой водоросли (Scenedesmus quadricauda) преобладает весной, что составляет 42 %, тогда как в зимний период его численность не превышает 3 %, был обнаружен во все сезоны года.

Рисунок 3 - Численность зеленой водоросли (Ankistrodesmus acicularis) в Покровском озере, 2013 г., (% от общегодового значения)


Рисунок 4 - Численность зеленой водоросли (Scenedesmus quadricauda) в Покровском озере, 2013 г., (% от общегодового значения)

На рисунке 4 представлена численность сине-зеленой водоросли (Microcystis aerugenosa), которая преобладает в летний период, что составляет 70 %, средняя летняя температура воды была 26,6, что является благоприятным условием для ее развития. В зимний период не многочисленна, около 1 %.

На рисунке 5 видно, что сине-зеленой водоросли (Oscillatoria tenui) преобладает в летний период, что составляет 63 %, в зимний период не обнаружена.


Рисунок 5 - Численность сине-зеленой водоросли (Microcystis aerugenosa) в Покровском озере, 2013 г., (% от общегодового значения)


Рисунок 6- Численность сине-зеленой водоросли (Oscillatoria tenuis) в Покровском озере, 2013 г., (% от общегодового значения)

На рисунке 7 представлена диатомовая водоросль (Navicula platystoma), которая достигает максимальной численности в осенний период 48 %, когда средняя осенняя температура воды 17,5 0С, и осенний период 35 %, средняя температура воды весной 13 0С.


Рисунок 7 - Численность диатомовой водоросли (Navicula platystoma) в Покровском озере, 2013 г., (% от общегодового значения)

Фитопланктон - это класс организмов, встречающийся в больших водоемах и включающий в себя широкий ряд различных подвидов. Это чрезвычайно разнообразная группа, и многообразие этих организмов бросает вызов эволюции и естественному отбору. Согласно общим принципам нехватка ресурсов делает невозможным выживание в экосистеме такого большого количества разных организмов без уничтожения друг друга.

Но так или иначе они существуют. Вот такая загадка.

Микроскопический фитопланктон живет по всему морю, в его освещенной, фотической зоне - до 100 метров в глубину. Кроме того, микроскопические водоросли могут очень быстро расти и размножаться - некоторые виды способны удваивать свою биомассу за день! Поэтому, они - главная морская растительность, основа жизни в море: улавливая солнечный свет, они превращают воду, углекислый газ, и соли морской воды - в свое живое вещество - растут.

На языке экологии это процесс называется первичной продукцией. Зоопланктон поедает фитопланктон - и тоже растет и размножается, это уже вторичная продукция. А затем наступает черед редукции - разложения: все, рождается и живет - умирает, и останки всех планктеров, и вообще всего живого в море - достаются бактериям, населяющим водную толщу.Бактериопланктон разлагает эти останки, возвращая вещество в неорганическое состояние. Это - круговорот веществ в море.

К фитопланктону относятся не только водоросли, но и планктонные фотосинтезирующие бактерии. Это цианобактерии (раньше их еще называли сине-зелеными водорослями, но это настоящие бактерии - прокариоты - в их клетках нет ядер). В Черном море они встречаются, в основном, в прибрежных водах, особенно, в опресненных районах - рядом с устьями рек, много их опресненном и переудобренном Азовском море; многие цианобактерии выделяют токсины.

Все планктонные растения - одноклеточные, вокруг них плавает столько быстрых и ловких хищников - как же им удается уцелеть? Ответ на этот вопрос таков: уцелеть не удается, но продлить существование получается.

Во-первых , большинство растений планктона - подвижны: у них есть жгутики, у кого один, у кого - пара, а у зеленых празинофитов Prasinophyceae - целых четыре (или даже восемь!), и носятся они по своему маленькому миру - не менее шустро, чем простейшие животные.

Во-вторых, очень многие планктонные водоросли имеют внешний скелет - панцирь. Он защитит от мелких инфузорий, но будет бесполезен против челюстей крупных личинок раков. Церациум, например, такой большой - до 400 микрон, его панцирь такой крепкий, что почти никто из зоопланктеров с ним не справится, но планктоядные рыбы съедят и его.

Морской фитопланктон - первичная форма жизни на Земле. Он является основой водной пищевой цепи и присутствует в рационе всех обитателей моря: от зоопланктона до китов. Фитопланктон является идеальной пищей для живых организмов и обладает колоссальной питательной ценностью. В нем содержатся все питательные вещества и микроэлементы, необходимые клеткам организма для нормального протекания обменных процессов. Хорошим доказательством уникальных свойств морского фитопланктона могут служить синие киты. Эти морские гиганты, обладающие огромной силой и выносливостью, живут более ста лет и до последнего дня сохраняют способность размножаться. Рацион китов полностью состоит из планктона, который они поглощают в огромном количестве: от 3 до 8 тонн в день.

Учеными доказано, что морской фитопланктон насыщен витаминами, аминокислотами, антиоксидантами и может использоваться в пищу как богатейший источник минералов, таких как селен, цинк, магний, хром, стронций и др. Он может заменить многие лекарственные препараты и предотвратить множество заболеваний: от диабета до болезни Альцгеймера. Важным преимуществом перед другими биологически активными добавками является микроскопический размер полезных веществ и органическая форма, благодаря чему организм усваивает их быстро и легко.

Однако, при всех неоспоримых достоинствах морского фитопланктона существует одно «но» - он заключен в плотную защитную оболочку, как ядрышко ореха заключено в скорлупу. В процессе эволюции человеческий организм утратил способность расщеплять эту оболочку, поэтому морской фитопланктон не усваивается человеком.

Чтобы человек мог усваивать полезные вещества, содержащиеся в морском фитопланктоне, необходимо было решить непростую задачу: каким-то образом разрушить защитную оболочку, сохранив при этом питательную ценность микроэлементов. С этой задачей блестяще справился Том Харпер, владелец морской фермы по выращиванию моллюсков из Канады. В 2005 году он изобрел новую технологию, позволяющую раскрывать оболочку фитопланктона без использования тепловой обработки, замораживания или применения химикатов. Этот технологический процесс, названный Alpha 3 CMP, был запатентован, но история на этом не закончилась.

Какое-то время спустя основатель компании Forever Green Рон Уильямс вышел на Тома Харпера с предложением о сотрудничестве. Был подписан контракт, согласно которому компания ForeverGreen получила эксклюзивное право на использование в своих продуктах морского фитопланктона, обработанного по технологии Alpha 3 CMP. Таким образом, она является единственной в мире компанией, которая производит продукты, содержащие 100% натуральный и усвояемый человеком морской фитопланктон.

Мальдивы прекрасны сами по себе. Жаркое солнце, ласковое море и бескрайняя береговая линия. Но есть еще одна достопримечательность Мальдив - биолюминесцентный фитопланктон. Уникальные водоросли известны также под названием «красный прилив». Местные жители утверждают, что купание в подобных водах вызывает небольшой дискомфорт, поэтому такая береговая линия чаще всего является безлюдной. С наступлением темноты биолюминесцентный фитопланктон начинает светиться, освещая побережье фантастическим голубым светом. Тайваньский фотограф Will Ho запечатлел это явление.

Светящиеся одноклеточные динофлагелляты запускают свою иллюминацию от движения в толще воды: электрический импульс, возникающий в результате механического стимула, открывает ионные каналы, работа которых и активирует «светящийся» фермент.

Учёным удалось окончательно раскрыть загадку свечения динофлагеллят - морских простейших, составляющих значительную часть пелагического планктона. Некоторые группы этих одноклеточных, такие как ночесветки, обладают способностью к биолюминесценции. Собираясь вместе, они могут быть замечены даже из космоса: огромная океаническая поверхность испускает голубоватый свет.

По мнению учёных, биолюминесцентный аппарат этих простейших работает так. При движении в толще воды механические силы вызывают электроимпульс, который устремляется внутрь клетки, к специальной вакуоли. Эта вакуоль, полый мембранный пузырёк, наполнена протонами. С ней соединены сцинтоллоны - мембранные пузырьки со «светящимся» ферментом люциферазой. Когда к вакуоли приходит электрический импульс, между ней и сцинтиллоном открываются протонные ворота. Ионы водорода перетекают в сцинтиллон и закисляют среду в нём, что делает возможным протекание биолюминесцентной реакции.

Лучше всего свечение этих простейших можно наблюдать в период размножения: число одноклеточных становится таким, что морская вода напоминает молоко - правда, уж слишком ярко-голубого цвета. Впрочем, любоваться динофлагеллятами следует с осторожностью: многие из них вырабатывают опасные для человека и животных токсины, поэтому, когда их становится слишком много, получать эстетическое удовольствие от светящегося прилива будет безопаснее на берегу.«Я работаю в этой области почти 30 лет, и я думал, что меня ничем не удивишь», говорит Кевин Арриго, океанограф-биолог из Стэнфордского университета. Лед плохо пропускает свет, особенно если он лежит толстым слоем, как это и было в Арктике. Снежный покров делает доступ света в глубь невозможным. В этом и состоит парадокс существования фитопланктона в толще льда, поскольку этим микроорганизмам необходим солнечный свет, без которого невозможен фотосинтез.

Теплый воздух способствует таянию снега. Когда снег начинает таять, ледяной покров начинает темнеть, позволяя льду поглощать больше света. Благодаря специальным камерам, опущенным под лед, исследователи обнаружили, что фитопланктон развивается чрезвычайно быстро. Благодаря солнечному свету и постоянному притоку питательных веществ от Берингова пролива, организмы могут процветать на глубине более 50 метров.

Чем это процветание обернется для остальных обитателей подводного мира, пока не ясно. Но Арриго опасается, что, находясь подо льдом, эти микроорганизмы могут усложнить жизнь другим подводным обитателям в этом районе. Чтобы подтвердить или опровергнуть эти опасения, потребуется долго и кропотливо работать, поскольку спутники не могут видеть сквозь лед.

«Нам очень повезло, что мы обнаружили фитопланктон, но мы не знаем, насколько далеко он распространится, и какие последствия это за собой повлечет», говорит Жан-Эрик Тремблей, океанограф-биолог из Университета Лаваля в Квебеке, Канада.

Растительная часть планктона, распространенного в слое воды (в Мировом океане составляет в среднем 200 м), получающем солнечную энергию (эвфотическая зона). Фитопланктон основной первичный продуцент органические вещества в водоемах, за счет… … Экологический словарь

фитопланктон - Часть планктона, представленная растениями. [ГОСТ 30813 2002] фитопланктон Одноклеточные водоросли, обитающие в верхнем освещённом слое воды. [Словарь геологических терминов и понятий. Томский Государственный Университет] Тематики водоснабжение и … Справочник технического переводчика

ФИТОПЛАНКТОН - (от фито... и планктон) совокупность микроскопических растений (главным образом водорослей), обитающих в толще морских и пресных вод и пассивно передвигающихся под влиянием водных течений. Источник органических веществ в водоеме пищи для др.… … Большой Энциклопедический словарь

ФИТОПЛАНКТОН - ФИТОПЛАНКТОН, совокупность мелких дрейфующих по течению океанических растений, в противоположность ЗООПЛАНКТОНУ совокупности мелких дрейфующих по течению животных организмов. Большая часть фитопланктона микроскопического размера, например,… … Научно-технический энциклопедический словарь

фитопланктон - сущ., кол во синонимов: 1 микрофитопланктон (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

ФИТОПЛАНКТОН - совокупность водорослей, обитающих в верхнем освещенном слое воды. Ф. образуют одноклеточные водоросли разл. систематической принадлежности золотистые, перидиниевые, диатомовые, синезеленые, разножгутиковые, эвгленовые и др., имеющие ряд… … Геологическая энциклопедия

Фитопланктон - совокупность одноклеточных растений, обитающих в фотическом слое океана. Является основным источником новообразования органического вещества в океане. Затрудняет обнаружение подводных лодок. EdwART. Толковый Военно морской Словарь, 2010 … Морской словарь

фитопланктон - Совокупность растительных организмов, входящих в состав планктона (диатомовые, зеленые и синезеленые водоросли) … Словарь по географии

ФИТОПЛАНКТОН - свободноплавающие растительные организмы (водоросли), населяющие поверхностные слои воды. Массовое развитие Ф. в прудах придает воде определенную окраску. Ф. является источником первичной продукции (органического вещества) и источником кислорода… … Прудовое рыбоводство

Книги

  • Фитопланктон Нижней Волги Водохранилища и низовье реки , Трифонова И. (ред.). Общепринятой единой системы биологического анализа качества вод не существует. Краткий анализ экологической ситуации в бассейне р. Волги и других рек показывает необходимость проведения… Купить за 151 руб
  • Фитопланктон Нижней Волги. Водохранилище и низовье реки , . В книге представлены лимнологические особенности водохранилищ Нижней Волги - Куйбышевского, Саратовского и Волгоградского, а также физико-географическая характеристика региона в целом. Дано…

Альгофлора рек слагается из трех основных компонентов: водорослей автотрофного происхождения (зеленых, синезеленых, диатомовых, эвгленовых и др.), перифитона (водорослей обрастания) и водорослей бентоса, вегетирующих на дне и попавших в планктон.

Развитие водорослей определяют наличие азота и фосфора, света, движение воды, ее температура и мутность. Синезеленые и зеленые водоросли развиваются при температуре от 4 до 23°С (максимальное развитие – от 19 до 23°С), большинство эвгленовых – от 2 до 28°С (максимальное их развитие наблюдается летом и в начале осени). В то же время диатомовые водоросли хорошо развиваются при низких температурах воды. Отмечено два пика их развития – весенний и осенний.

Роль фитопланктона и фитомикробентоса в формировании качества воды двоякая. С одной стороны, они являются активными агентами биологического самоочищения, поскольку выделяют кислород и поглощают биогенные элементы, непосредственно поступающие в водоем или образующиеся при разложении органических веществ. С другой стороны, новообразованное в процессе фотосинтеза органическое вещество при отмирании попадает в воду и представляет собой источник вторичного загрязнения (биологического). Как правило, биомасса фитопланктона в пределах 1 – 4 мг/л не вызывает ухудшения качества воды; при концентрации водорослей 5 –10 мг/л оно существенно ухудшается, а при концентрации 10 – 50 мг/л и более возникает угроза биологического загрязнения и появления токсикантов.

Фитомикробентос, как правило, играет положительную роль в формировании качества воды, поскольку водоросли дна продуцируют незначительную биомассу, которая не может вызвать ощутимого вторичного биологического загрязнения.

Скорость течения как фактор, лимитирующий вегетацию водорослей и обеспечивающий удовлетворительное качество воды, проявляется для фитопланктона при скорости течения 1 м/с, для фитомикробентоса – выше 1 м/с.

Водоросли живут в основном в водной среде, но встречаются они и в почве, на скалах, на стволах деревьев, внутри известнякового субстрата, в воздухе, в горячих источниках, а также во льдах Северного полюса и Антарктиды. Самые первые сведения о водорослях нам известны из книг античного римского ученого Плиния Старшего. Он дал название этим растениям – Algae, что означает «травянистая морская поросль». В России в двадцатых годах XIX века естествоиспытатель И. А. Двигубский для растений, произрастающих в воде, предложил название «водарасли», но в 1927 году ученый М. А. Максимович изменил его на «водоросли». С тех пор мы используем это название и в разговорной речи, и как научный термин.

Определение водорослей, используемое в учебниках по ботанике и научно-популярной литературе, звучит следующим образом: «Водоросли – это низшие, т. е. слоевцовые (лишенные расчленения на стебель и листья), споровые растения, содержащие в своих клетках хлорофилл и живущие преимущественно в воде».

Водоросли играют огромную роль в природе и жизни человека. В водоемах, как создатели органического вещества, они являются первым звеном пищевых цепей. По содержанию белков, жиров и углеводов водоросли не уступают сену и являются калорийной пищей для многочисленных водных животных – корненожек, червей, мелких ракообразных, ручейников и моллюсков. Некоторые пресноводные водоросли являются съедобными и для людей, они употребляются в пищу в Китае, Японии, Канаде, США, Франции, Австралии, Корее. Широко используются водоросли в животноводстве в качестве корма и кормовых добавок, так как белки, витамины и физиологически активные вещества повышают устойчивость животных к различным заболеваниям, ускоряют их рост и размножение.

Водоросли производят и выделяют в окружающую среду различные химические соединения и биологически активные вещества и таким образом оказывают воздействие на формирование качества природных вод и их органолептические свойства (вкус, цвет и запах). Так, например, Anabaena и Microcystis придают воде болотный запах, a Asterionella и Synedra – рыбный. «Цветение» воды сопровождается ухудшением ее физико-химических показателей, происходит повышение цветности, снижение прозрачности, повышение окисляемости, хлорпоглощаемости.

Сине-зеленые водоросли продуцируют токсины, обладающие широким спектром биологического действия. По характеру действия на теплокровных животных их делят на две большие группы: нейротоксины и гепатотоксины. Потребление воды, в которой массово развиваются сине-зеленые водоросли, может привести к возникновению гастроэнтеритов и других желудочно-кишечных заболеваний, сильной мышечной боли, судорог, парезов конечностей. Известны случаи заболевания людей конъюнктивитом после купания в «цветущей» воде, аллергического поражения кожных и слизистых покровов, поражения печени присутствующими в воде гепатотоксинами водорослевого происхождения.

Развившийся в массе фитопланктон вызывает гибель мальков и взрослых рыб. Водоросли принимают активное участие в обмелении водоемов, происходящем из-за осаждения фитопланктона. Кроме того, массовое развитие водорослей оказывает и чисто механическое вредное влияние – засоряет фильтровальные устройства водопроводных станций, конденсаторы гидроэлектростанций.

Так как большинство пресноводных водорослей имеют микроскопические размеры, то увидеть их невооруженным глазом в природе возможно лишь в случае их массового развития – по изменению окраски среды обитания: воды, почвы или другого субстрата.

В стоячих водоемах при массовом развитии сине-зеленых водорослей вода приобретает голубовато-зеленый оттенок, а на поверхности ее появляются голубоватые или бирюзового цвета пенистые скопления. Если на поверхности стоячих водоемов плавают сплошные ватообразные скопления зеленых нитей («тина»), – это, скорее всего, скопления нитчатых зеленых водорослей. Слизистые зеленые пленки на почве в увлажненных местах или у уреза воды водоема также указывают на присутствие водорослей. Иногда водорослями обрастают высшие водные растения, и в таком случае их можно заметить в виде тонких нитей или скользкого налета на листьях растений с нижней стороны листа, погруженной в воду. Бесформенные бурые рыхлые скопления, зеленые слизистые шарики или даже небольшие зеленые разветвленные кустики, состоящие из тонких нитей на поверхности ветки, долгое время пролежавшей в воде, тоже водоросли. Может быть, никаких оформленных обрастаний нет, только какая-то бурая рыхлая грязь у уреза воды стоячего водоема, – это тоже скопления микроскопических водорослей.

Синезеленые. Любые организмы, живущие на Земле, занимают определенное и уникальное место в составе биоценозов, незаменимы и заслуживают тщательного изучения. Однако роль некоторых групп в эволюции и существовании биосферы представляется особенно значительной. Такой группой, по данным современной науки, несомненно, являются цианобактерии.

Еще в 19 веке ученые обращали внимание на несомненное сходство синезеленых водорослей и бактерий.

Синезеленые водоросли по характеру их клеточной организации вполне соответствуют грамотрицательным бактериям и представляют самостоятельную ветвь их эволюции, для цианобактерии характерна высокая морфологическая сложность и способность к осуществлению фотосинтеза с выделением молекулярного кислорода. Таким образом, термин «цианобактерии» вполне оправдан. Хотя цианобактерии с точки зрения формальной систематики не могут рассматриваться в качестве таксона высокого ранга, в эволюции жизни на Земле они сыграли особую роль, большое значение они имеют и в функционировании современной биосферы. Описано более 1500 видов синезеленых водорослей, среди них есть формы одноклеточные, размножающиеся делением, почкованием или дроблением клетки на ряд дочерних клеток, формы колониальные и формы нитчатые. Нити могут быть простые или ветвящиеся. Размеры клеток значительно варьируют: их диаметр у некоторых видов может составлять доли микрометра, тогда как у других – десятки микрометров. Колонии цианобактерий или дерновинки, образованные нитчатыми формами, могут быть макроскопических размеров. Отдельные клетки или нити у некоторых цианобактерий способны ползать по плотному субстрату.

Различные виды цианобактерий обладают разнообразными адаптационными механизмами, определяющими успешное развитие их в тех или иных условиях окружающей среды. Некоторые формы Scytonema, например, образуют пигмент, концентрирующийся на поверхности клетки и эффективно защищающий ее от ультрафиолетовых лучей, что определяет возможность развития этой цианобактерий при прямом солнечном освещении.

Диатомовые водоросли. Г руппа простейших, традиционно рассматриваемая в составе водорослей, отличающаяся наличием у клеток своеобразного «панциря». Панцирь состоит из двух половинок – эпитеки и гипотеки , причём эпитека больше, и её края заходят на края гипотеки. В результате деления клетки дочерние получают по одной половинке панциря и достраивают к ней меньшую. Очевидно, что из-за этого популяция постепенно мельчает и после нескольких делений клетки образуют ауксоспоры , не имеющие панциря. Ауксоспоры растут в объёме и впоследствии дают начало новому крупному поколению.

Панцирь состоит из аморфного кремнезёма. Массовые скопления скелетов диатомовых образуют горную породу диатомит.

Типичны для весеннего и осеннего фитопланктона, во многих водоемах в этот период являются основной группой. Иногда может наблюдаться цветение.

Зеленые водоросли. Зелёные во́доросли (лат. Chlorophyta ) – группа низших растений. В современной систематике эта группа имеет ранг отдела, включающего одноклеточные и колониальные планктонные водоросли, одноклеточные и многоклеточные формы бентосных водорослей. Здесь встречаются все морфологические типы слоевища, кроме ризоподиальных одноклеточных и крупных многоклеточных форм со сложным строением. Многие нитчатые зелёные водоросли крепятся к субстрату только на ранних стадиях развития, затем они становятся свободноживущими, формируя маты или шары.

Самый обширный на данное время отдел водорослей. По приблизительным подсчётам сюда входит от 13 000 до 20 000 видов. Все они отличаются в первую очередь чисто-зелёным цветом своих слоевищ, сходным с окраской высших растений и вызванным преобладанием хлорофилла над другими пигментами.

Роды нитчатых зеленых водорослей можно определить по хроматофору (аналог хлоропластов в клетках растений). Чаще всего эти водоросли развиваются в виде больших скоплений зеленых нитей в небольших стоячих водоемах, заводях рек. Чаще других встречается Spirogyra.

Это то, что в народе называют «тина». Виды Spirogyra чаще всего являются показателями слабо загрязненных вод. Этот род не имеет индекса сапробности. Виды Mougeotia и Zygnema – показатели чистых вод.

Золотистые водоросли. Золотистые водоросли (лат. Chrysophyta ) – отдел низших растений, включающий в себя преимущественно микроскопические водоросли различных оттенков жёлтого цвета. Золотистые водоросли бывают одноклеточными, колониальными и многоклеточными. Известно около 800 видов.

Динофлагелля́ты. Это тип протистов из группы альвеолят. Большинство представителей – двусторонне-симметричные или асимметричные жгутиконосцы с развитым внутриклеточным панцирем. Значительную часть динофлагеллят характеризует способность к фотосинтезу, в связи с чем группу также называют динофитовыми водорослями. Некоторые представители (например, ночесветки) способны к люминесценции. Всего описано 5–6 тысяч видов.

Высокое хозяйственное значение имеют представители, массовые вспышки численности которых приводят к возникновению «красных приливов ».

Эвгленовые водоросли. Отряд простейших. Объединяет около 1000 видов, среди них имеется много бесцветных форм. Эвглениды имеют один или несколько жгутиков, за исключением небольшой группы безжгутиковых форм, а также прикрепленных организмов.

Эвглена также имеет глазок, который реагирует на свет.

Клетки лишены целлюлозных оболочек. Под плазмалеммой расположен плотный, эластичный, белковой природы слой протопласта, называемый пелликулой . От её плотности зависит постоянство формы клеток, Каждый хлоропласт имеет трёхслойную мембрану. Согласно теории эндосимбиоза, третья мембрана хлоропласта – это плазмалемма зеленой водоросли, поглощенной предковой зоофлагеллятой, или эндоцитозная мембрана хозяина.

Красные водоросли. Красные водоросли (лат. Rhodophyta ) – отдел растений. Это обитатели прежде всего морских водоемов, пресноводных представителей известно немного. Обычно это довольно крупные растения, но встречаются и микроскопические. Среди красных водорослей имеются одноклеточные (крайне редко), нитчатые и псевдопаренхимные формы, истинно паренхимные формы отсутствуют. Ископаемые остатки свидетельствуют, что это очень древняя группа растений.

Предыдущая
October 13th, 2015

Вы знали о таком?

Фитопланктон - это класс организмов, встречающийся в больших водоемах и включающий в себя широкий ряд различных подвидов. Это чрезвычайно разнообразная группа, и многообразие этих организмов бросает вызов эволюции и естественному отбору. Согласно общим принципам нехватка ресурсов делает невозможным выживание в экосистеме такого большого количества разных организмов без уничтожения друг друга.

Но так или иначе они существуют. Вот такая загадка.

Чуть подробнее про фитопланктон …

Микроскопический фитопланктон живет по всему морю, в его освещенной, фотической зоне - до 100 метров в глубину. Кроме того, микроскопические водоросли могут очень быстро расти и размножаться — некоторые виды способны удваивать свою биомассу за день! Поэтому, они — главная морская растительность, основа жизни в море: улавливая солнечный свет, они превращают воду, углекислый газ, и соли морской воды — в свое живое вещество — растут.

На языке экологии это процесс называется первичной продукцией . Зоопланктон поедает фитопланктон — и тоже растет и размножается, это уже вторичная продукция . А затем наступает черед редукции - разложения: все, рождается и живет — умирает, и останки всех планктеров, и вообще всего живого в море — достаются бактериям, населяющим водную толщу.Бактериопланктон разлагает эти останки, возвращая вещество в неорганическое состояние. Это — круговорот веществ в море .

К фитопланктону относятся не только водоросли, но и планктонные фотосинтезирующие бактерии. Это цианобактерии (раньше их еще называли сине-зелеными водорослями, но это настоящие бактерии — прокариоты - в их клетках нет ядер). В Черном море они встречаются, в основном, в прибрежных водах, особенно, в опресненных районах — рядом с устьями рек, много их опресненном и переудобренном Азовском море; многие цианобактерии выделяют токсины.

Всепланктонные растения — одноклеточные, вокруг них плавает столько быстрых и ловких хищников -как же им удается уцелеть? Ответ на этот вопрос таков: уцелеть не удается, но продлить существование получается .

Во-первых , большинство растений планктона — подвижны: у них есть жгутики, у кого один, у кого — пара, а у зеленых празинофитов Prasinophyceae — целых четыре (или даже восемь!), и носятся они по своему маленькому миру — не менее шустро, чем простейшие животные.

Во-вторых, очень многие планктонные водоросли имеют внешний скелет — панцирь. Он защитит от мелких инфузорий, но будет бесполезен против челюстей крупных личинок раков. Церациум, например, такой большой — до 400 микрон, его панцирь такой крепкий, что почти никто из зоопланктеров с ним не справится, но планктоядные рыбы съедят и его.

Морской фитопланктон — первичная форма жизни на Земле. Он является основой водной пищевой цепи и присутствует в рационе всех обитателей моря: от зоопланктона до китов. Фитопланктон является идеальной пищей для живых организмов и обладает колоссальной питательной ценностью. В нем содержатся все питательные вещества и микроэлементы, необходимые клеткам организма для нормального протекания обменных процессов. Хорошим доказательством уникальных свойств морского фитопланктона могут служить синие киты. Эти морские гиганты, обладающие огромной силой и выносливостью, живут более ста лет и до последнего дня сохраняют способность размножаться. Рацион китов полностью состоит из планктона, который они поглощают в огромном количестве: от 3 до 8 тонн в день.

Учеными доказано, что морской фитопланктон насыщен витаминами, аминокислотами, антиоксидантами и может использоваться в пищу как богатейший источник минералов, таких как селен, цинк, магний, хром, стронций и др. Он может заменить многие лекарственные препараты и предотвратить множество заболеваний: от диабета до болезни Альцгеймера. Важным преимуществом перед другими биологически активными добавками является микроскопический размер полезных веществ и органическая форма, благодаря чему организм усваивает их быстро и легко.

Однако, при всех неоспоримых достоинствах морского фитопланктона существует одно «но» — он заключен в плотную защитную оболочку, как ядрышко ореха заключено в скорлупу. В процессе эволюции человеческий организм утратил способность расщеплять эту оболочку, поэтому морской фитопланктон не усваивается человеком.

Чтобы человек мог усваивать полезные вещества, содержащиеся в морском фитопланктоне, необходимо было решить непростую задачу: каким-то образом разрушить защитную оболочку, сохранив при этом питательную ценность микроэлементов. С этой задачей блестяще справился Том Харпер, владелец морской фермы по выращиванию моллюсков из Канады. В 2005 году он изобрел новую технологию, позволяющую раскрывать оболочку фитопланктона без использования тепловой обработки, замораживания или применения химикатов. Этот технологический процесс, названный Alpha 3 CMP, был запатентован, но история на этом не закончилась.

Какое-то время спустя основатель компании Forever Green Рон Уильямс вышел на Тома Харпера с предложением о сотрудничестве. Был подписан контракт, согласно которому компания ForeverGreen получила эксклюзивное право на использование в своих продуктах морского фитопланктона, обработанного по технологии Alpha 3 CMP. Таким образом, она является единственной в мире компанией, которая производит продукты, содержащие 100% натуральный и усвояемый человеком морской фитопланктон.

Мальдивы прекрасны сами по себе. Жаркое солнце, ласковое море и бескрайняя береговая линия. Но есть еще одна достопримечательность Мальдив — биолюминесцентный фитопланктон. Уникальные водоросли известны также под названием «красный прилив». Местные жители утверждают, что купание в подобных водах вызывает небольшой дискомфорт, поэтому такая береговая линия чаще всего является безлюдной. С наступлением темноты биолюминесцентный фитопланктон начинает светиться, освещая побережье фантастическим голубым светом. Тайваньский фотограф Will Ho запечатлел это явление.


Светящиеся одноклеточные динофлагелляты запускают свою иллюминацию от движения в толще воды: электрический импульс, возникающий в результате механического стимула, открывает ионные каналы, работа которых и активирует «светящийся» фермент.

Учёным удалось окончательно раскрыть загадку свечения динофлагеллят - морских простейших, составляющих значительную часть пелагического планктона. Некоторые группы этих одноклеточных, такие как ночесветки, обладают способностью к биолюминесценции. Собираясь вместе, они могут быть замечены даже из космоса: огромная океаническая поверхность испускает голубоватый свет.

По мнению учёных, биолюминесцентный аппарат этих простейших работает так. При движении в толще воды механические силы вызывают электроимпульс, который устремляется внутрь клетки, к специальной вакуоли. Эта вакуоль, полый мембранный пузырёк, наполнена протонами. С ней соединены сцинтоллоны - мембранные пузырьки со «светящимся» ферментом люциферазой. Когда к вакуоли приходит электрический импульс, между ней и сцинтиллоном открываются протонные ворота. Ионы водорода перетекают в сцинтиллон и закисляют среду в нём, что делает возможным протекание биолюминесцентной реакции.

Лучше всего свечение этих простейших можно наблюдать в период размножения: число одноклеточных становится таким, что морская вода напоминает молоко - правда, уж слишком ярко-голубого цвета. Впрочем, любоваться динофлагеллятами следует с осторожностью: многие из них вырабатывают опасные для человека и животных токсины, поэтому, когда их становится слишком много, получать эстетическое удовольствие от светящегося прилива будет безопаснее на берегу.

И еще один парадокс:

Ученые были потрясены, обнаружив цветущий фитопланктон под толщей ледяного покрова Арктики. Фитопланктон (Plankton Hazea) был обнаружен у берегов Аляски случайно, когда ученые заметили густую зеленую дымку в воде.

Огромный “зеленый шлейф” фитопланктона простирается более чем на 100 километров вдоль побережья Аляски. ”Наличие фитопланктона в воде может неблагоприятно сказаться на существовании других подводных существ в Чукотском море”, сообщили исследователи 7 июня 2012 года.

«Я работаю в этой области почти 30 лет, и я думал, что меня ничем не удивишь», говорит Кевин Арриго, океанограф-биолог из Стэнфордского университета. Лед плохо пропускает свет, особенно если он лежит толстым слоем, как это и было в Арктике. Снежный покров делает доступ света в глубь невозможным. В этом и состоит парадокс существования фитопланктона в толще льда, поскольку этим микроорганизмам необходим солнечный свет, без которого невозможен фотосинтез.

Теплый воздух способствует таянию снега. Когда снег начинает таять, ледяной покров начинает темнеть, позволяя льду поглощать больше света. Благодаря специальным камерам, опущенным под лед, исследователи обнаружили, что фитопланктон развивается чрезвычайно быстро. Благодаря солнечному свету и постоянному притоку питательных веществ от Берингова пролива, организмы могут процветать на глубине более 50 метров.

Чем это процветание обернется для остальных обитателей подводного мира, пока не ясно. Но Арриго опасается, что, находясь подо льдом, эти микроорганизмы могут усложнить жизнь другим подводным обитателям в этом районе. Чтобы подтвердить или опровергнуть эти опасения, потребуется долго и кропотливо работать, поскольку спутники не могут видеть сквозь лед.

«Нам очень повезло, что мы обнаружили фитопланктон, но мы не знаем, насколько далеко он распространится, и какие последствия это за собой повлечет», говорит Жан-Эрик Тремблей, океанограф-биолог из Университета Лаваля в Квебеке, Канада.

Есть еще небольшой сборник парадоксов - Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -