В чем состоит внешний фотоэффект. Явление внешнего фотоэффекта

Гипотеза Планка, блестяще решившая задачу теплового излучения черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта – явления, открытие и исследование которого сыграло важную роль в становлении квантовой теории. В 1887 году Г. Герц обнаружил, что при освещении отрицательного электрода ультрафиолетовыми лучами разряд между электродами происходит при меньшем напряжении. Это явление, как показали опыты В. Гальвакса (1888 г.) и А.Г. Столетова (1888–1890 гг.), обусловлено выбиванием под действием света отрицательных зарядов из электрода. Электрон еще не был открыт. Лишь в 1898 году Дж.Дж. Томпсон и Ф. Леонард, измерив удельный заряд испускаемых телом частиц, установили, что это электроны.

Различают фотоэффект внешний, внутренний, вентильный и многофотонный фотоэффект.

Внешним фотоэффектом называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация).

Внутренний фотоэффект – это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникновению электродвижущей силы (ЭДС).

Вентильный фотоэффект является разновидностью внутреннего фотоэффекта, – это возникновение ЭДС (фото ЭДС) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает пути для прямого преобразования солнечной энергии в электрическую.

Многофотонный фотоэффект возможен, если интенсивность света очень большая (например, при использовании лазерных пучков). При этом электрон, испускаемый металлом, может одновременно получить энергию не от одного, а от нескольких фотонов.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А.Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис. 2.1.

Рис. 2.1 Рис. 2.2

Два электрода (катод К из исследуемого материала и анод А , в качестве которого Столетов применял металлическую сетку) в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое стекло), измеряется включенным в цепь миллиамперметром.

В 1899 г. Дж. Дж. Томпсон и Ф. Ленард доказали, что при фотоэффекте свет выбивает из вещества электроны.

Вольт-амперная характеристика (ВАХ) фотоэффекта – зависимость фототока I , образуемого потоком электронов, от напряжения, – приведена на рис. 2.2.

Такая зависимость соответствует двум различным энергетическим освещенностям катода (частота света в обоих случаях одинакова). По мере увеличения U фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями.

Максимальное значение фототока насыщения определяется таким значением напряжения U , при котором все электроны, испускаемые катодом, достигают анода:

где n – число электронов, испускаемых катодом в 1 с.

Из ВАХ следует, при U = 0 фототок не исчезает. Следовательно, электроны, выбитые из катода, обладают некоторой начальной скоростью υ, а значит и отличной от нуля кинетической энергией, поэтому они могут достигнуть катода без внешнего поля. Для того, чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение . При ни один из электронов, даже обладающий при вылете из катода максимальной скоростью , не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

2.1. Цель работы
Практическое ознакомление с закономерностями внешнего фотоэффекта; экспериментальное определение работы выхода для сурьмяно-цезиевого фотокатода, а также постоянной Планка.

Изучение закономерностей фотоэффекта привело физическую науку к понятию световых квантов и сыграло выдающуюся роль в становлении современных представлений о природе.

2.2.2. Вакуумный фотоэлемент
Это один из самых распространенных приборов, использующих внешний фотоэффект. Он представляет собой откаченный стеклянный баллон, часть внутренней поверхности которого покрыта металлом и является катодом К. Металлическое кольцо А служит анодом (см. рис. 2. 1).

Электрическая цепь на рис. 2. 1 разомкнута; ток в ней появится, только если из катода будут вырваны (например, светом) электроны, которые затем достигнут анода. Сила фототока зависит от числа вылетающих из катода электронов, от их начальной скорости, а также от разности потенциалов между катодом и анодом. Зависимость силы фототока от анодного напряжения (при постоянной освещенности катода) называется вольтамперной характеристикой (ВАХ) фотоэлемента (см. рис. 2. 2).

2.2.3. Закономерности фотоэффекта
Даже при нулевом анодном напряжении U некоторые из фотоэлектронов долетают до анода, поэтому I ≠ 0 при U = 0. С увеличением U анода достигают все большее число электронов, и сила фототока постепенно возрастает. Наконец, при некотором напряжении (называемым напряжением насыщения UН) все фотоэлектроны долетают до анода, и в дальнейшем увеличение напряжения не приводит к увеличению силы тока. Достигнутое значение силы фототока называется током насыщения IН. По значению силы тока насыщения можно судить о количестве электронов n , испускаемых катодом за единицу времени:

Если анодное напряжение отрицательно, то оно будет тормозить фотоэлектроны, и сила тока уменьшится.

При некотором значении напряжения U = U З < 0 (которое называется запирающим) даже самые быстрые фотоэлектроны не в силах достигнуть анода, и ток прекращается. При этом вся начальная кинетическая энергия электронов расходуется на совершение работы против сил задерживающего электрического поля:

E kmax = e*U З

(E kmax – начальная кинетическая энергия самых быстрых фотоэлектронов, покидающих катод при данных условиях).

На рис. 2. 2 приведены несколько ВАХ одного и того же фотоэлемента, полученные при облучении катода монохроматическим светом одной и той же частоты ω, но разной интенсивности (а) или одной и той же интенсивности I, но разных частот (б).

Экспериментально установлены следующие закономерности фотоэффекта .

1. При фиксированной частоте света сила фототока насыщения (и число фотоэлектронов вырываемых из катода за единицу времени) прямо пропорционально интенсивности света).

2. Величина запирающего напряжения (и максимальная скорость фотоэлектронов) определяется частотой света и не зависит от его интенсивности.

3. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота света ω0, при которой фотоэффект еще возможен.

2.2.4. Недостаточность классических представлений
К моменту открытия фотоэффекта была общепризнана волновая теория света, берущая начало из опытов Френеля, Юнга и Араго по дифракции и интерференции света. Из уравнений Максвелла следовало существование электромагнитных волн, свойства которых (экспериментально изученных Герцем) оказались тождественны свойствам света, а также инфракрасного и ультрафиолетового излучений. Были измерены длины световых волн (0,4 – 0,7 мкм).

С помощью представлений о свете как об электромагнитных волнах успешно объяснены (не только качественно, но и количественно) закономерности отражения, преломления, поляризации света. Естественным было стремление объяснить с тех же позиций и фотоэффект.

Металлы отличаются от других веществ наличием большого числа "свободных" электронов (не связанных с каким-либо атомом) проводимости. Резонно предположить, что именно эти электроны и будут вырываться электрическим полем световой (электромагнитной) волны. Тогда первый из указанных в п.2.2.3 законов фотоэффекта объясняется элементарно: чем больше амплитуда световой волны, тем большее количество электронов может она вырвать с поверхности металла.

Найдем далее зависимость скорости и кинетической энергии приобретаемой электроном, от параметров световой волны. Для этого проинтегрируем уравнение движения "свободного" электрона проводимости в переменном электрическом поле волны:

m e *v" = cos(ω*t)


где Е – амплитуда, ω = 2πν − циклическая частота света. Получим

m e *v = (e*E) / ω * sin(ω*t)

E k = m e *v 2 /2 = 1/2*m e * (e*E / ω) 2 * sin 2 (ω*t)

Поскольку интенсивность света определяется квадратом амплитуды электрического вектора Е, то можно сказать, что максимальная начальная кинетическая энергия фотоэлектронов: во-первых, прямо пропорциональна интенсивности света; во-вторых, обратно пропорциональна квадрату частоты света.

Однако оба этих предсказания никак не подтверждаются наблюдениями!

Даже если предположить, что свет вырывает из металла не электроны проводимости, а электроны, связанные с атомами квазиупругими силами, то решение уравнения движения такого электрона дало бы резонансную зависимость Е kmax от ω (острый пик при ω = ω 0 – частота собственных колебаний электронов в атомах) и по-прежнему пропорциональность меду интенсивностью света и Е kmax .
Итак, классические представления явно не способы объяснить всех наблюдаемых закономерностей фотоэффекта!

2.2.5. Квантовое истолкование законов фотоэффекта

В 1905 г. Эйнштейн показал, что закономерности излучения и поглощения света легко могут быть объяснены в предположении, что энергия света излучается и поглощается дискретными порциями (квантами); при этом величина кванта энергии света прямо пропорциональна его частоте: ε = hν (коэффициент h называется постоянной Планка).

В соответствии с квантовой теорией (см., например , ) энергия электрона в твердом теле также принимает дискретный ряд значений. Эти значения (энергетические уровни) группируются в полосы, или разрешенные зоны разделенные запрещенными зонами.

Энергетическая зона, заполненная электронами лишь частично, называется зоной проводимости ; у зон, лежащих ниже неё, заполнены все уровни.

Находящиеся в зоне проводимости электроны легко могут переходить на более высокие энергетические уровни этой зоны, иначе говоря – увеличивать свою кинетическую энергию (ускоряться) за счет внешних воздействий. Наивысший из энергетических уровней, занятых электронами при Т = 0 К, называется уровнем Ферми .

При обычных условиях все электроны в металле имеют отрицательные значения полной энергии; за нулевой уровень энергии принимается энергия покоящегося электрона, находящегося вне металла. Наименьшая работа, необходимая для удаления электрона из металла в вакуум, называется работой выхода А 0 . Фактически работа выхода – это энергия, которую нужно затратить, чтобы вырвать из металла (при Т = 0 К) электрон, имеющий энергию Ферми и движущийся к поверхности (а не вглубь) металла. Для вырывания любого другого электрона понадобится большая энергия! Работу выхода можно также трактовать как глубину потенциальной ямы, в которой находится электроны металла. Она определяется химической природой вещества и в меньшей степени – условиями, в которых оно находится, например, температурой.

Если энергия каждого кванта света (фотона) меньше работы выхода, то электроны, которым передается их энергия, не смогут покинуть металл. Минимальная частота света, которая еще может вызывать фотоэффект, определяется соотношением:

ν 0 = A 0 / h

и называется красной границей фотоэффекта . (Здесь "красная" является синонимом слов "длинноволновая" или "низкочастотная"; красная граница может лежать и в ультрафиолетовой области спектра!)

Итак, если поверхность металла освещена светом с частотой ν > ν 0 , то максимальная кинетическая энергия, которую могут иметь фотоэлектроны, определяется из соотношения

Е kmax = h*ν − A 0

называемого уравнением Эйнштейна для фотоэффекта.

В соответствии с уравнением Эйнштейна и формулой (2.2) запирающее напряжение должно зависеть от частоты линейно:

е*U З = hν − A 0


Этот вывод (одно из предсказаний квантовой теории) находится в прекрасном соответствии с опытом. Более того, измерив значение запирающего напряжения для нескольких частот света, мы можем с помощью уравнения (2.8) найти работу выхода материала фотокатода и постоянную Планка.


2.3. Описание лабораторной установки

В лабораторной установке, показанной на рис. 2.3, в качестве источника света используется ртутная газоразрядная лампа ДРШ, излучающая линейчатый спектр. (Длины волн спектральных линий ртути хорошо известны и занесены в таблицы, что избавляет от необходимости их измерять.)

С помощью монохроматора из излучения ртутной лампы выделяется узкие пучки монохроматического света, которые поочередно направляют на фотоэлемент с сурьмяно-цезиевым катодом.

Электрическая схема включения фотоэлемента показана на рис. 2.4. С помощью источника постоянного тока ИП, смонтированного в основании монохроматора, и двухполюсного переключателя S на аноде фотоэлемента Ф можно создавать как положительный (ускоряющее поле), так и отрицательный потенциал (тормозящее поле). Напряжение между катодом и анодом регулируется потенциометром R; для измерения напряжения служит вольтметр V. Сила тока в цепи фотоэлемента измеряется амперметром А.

2.4. Методика проведения эксперимента и обработка результатов
2.4.1. Методика эксперимента
2.4.1.1. Измеряемые и вычисляемые величины

Для определения красной границы фотоэффекта и постоянной Планка измеряются значения запирающего напряжения для нескольких наиболее ярких спектральных линий, двигаясь от фиолетовой до желто-зеленой области спектра. Для этих же линий снимаются вольт-амперные характеристики в интервале напряжения от 0 до 3 В.

По окончании измерений строится график зависимости U З (ν); по графику определяются значения h и ν 0 . Вычисляются значения λ 0 (нм), а также А 0 (Дж, эВ).


2.4.1.2. Темновой ток фотоэлемента и точность измерений

В реальном фотоэлементе даже при нулевой освещенности катода течет некоторый (очень небольшой) темновой ток I Т, обусловленный отчасти термоэлектронной эмиссией с катода, отчасти разностью работ выхода для катода и анода, отчасти просто утечкой тока между выводами фотоэлемента.

При разности потенциалов между катодом и анодом, близкой к U З, сила тока в цепи анода того же порядка, что и темновой ток. Однако величина темнового тока зависит от множества параметров и в принципе может меняться в ходе опыта.

Из сказанного ясно, что способ экспериментального определения U З как напряжения, при котором ток на выходе фотоэлемента равен нулю (или даже предварительно измеренному значению I Т) не вполне надежен. Для получения более достоверного значения U З следует увеличивать (по модулю) отрицательное анодное напряжение до тех пор, пока не прекратит уменьшаться анодный ток фотоэлемента.

При положительных значениях анодного напряжения темновой ток составляет незначительную часть полного тока. Поэтому при снятии вольт-амперной характеристики в области U > 0 учет темнового тока не требуется.


2.4.2. Порядок выполнения работы

2.4.2.1. Подготовка к работе

  1. Подготовьте амперметр к работе в соответствии с инструкцией.
  2. Включите ртутную лампу 1 нажатием тумблера "ВКЛ" и "ЛАМПА ДРШ" на блоке питания (если лампа не загорается, нажмите черную кнопку)
  3. При правильной настройке свет ртутной лампы должен быть сфокусирован в центре крышечки 2, закрывающей объектив монохроматора. Если это не так, наведите световое пятно на центр крышки 2, поворачивая винт 8 конденсорной линзы.
  4. Снимите крышку 2 с объектива монохроматора. Рукоятка затвора 4 должна стоять в положении "ОТКР".
  5. Микровинотом 3 установите ширину входной щели 0,15 мм.


2.4.2.2. Измерение запирающего напряжения

  1. Глядя в окуляр монохроматора, поворотом барабана 5 совместите яркую фиолетовую линию (λ = 404,7 нм) с указателем (темная стрелка на фоне спектра). При необходимости регулируйте резкость вращением окулярного кольца.
  2. Замените окулярную головку 7 на головку с фотоэлементом 6.
  3. Микровинтом 3 установите ширину входной щели 2 мм.
  4. Ручкой "УСТАНОВКА 0" амперметра выведите его стрелку на середину шкалы.
  5. Переключатель полярности блока питания фотоэлемента поставьте в положение "−".
  6. Вращая ручку потенциометра R, увеличивайте анодное напряжение до тех пор, пока стрелка амперметра не остановится.
  7. Запишите значения напряжения, при котором стрелка остановилась (запирающее напряжение) в таблицу 2.2.
  8. Проделайте измерения по пунктам 9-12 еще два раза.
  9. Ручкой "УСТАНОВКА 0" выставьте стрелку амперметра на нулевое деление.

2.4.2.3. Снятие вольт-амперных характеристик
  1. Переключатель полярности блока питания поставьте в положение "+".
  2. Потенциометром R установите анодное напряжение равное 0.
  3. Измерьте силу фототока для значений ускоряющего напряжения от 0 до 3 В через 0,6 В. Запишите ее в таблицу 2.3.
Внимание! Измерения по пункте 3 необходимо проделать также для синей (λ = 435,6 нм) и голубой (481,6 нм) линий спектра ртути.

Однократно измеряемые величины:

Таблица 2.1



2.4.3. Обработка результатов измерений

  1. Вычислите значения частоты ν = с/λ, соответствующие длинам волн исследуемых спектральных линий. Результаты занесите в таблицу 2.2.
  2. На миллиметровой бумаге постройте координатные оси ν и UЗ.
  3. Нанесите на график частóты исследованных спектральных линий и измеренные для этих линий значения запирающего напряжения.
  4. Через экспериментальные точки проведите прямую линию. Определите координаты точек ее пересечения с осями ν и U З (см. рис. 2.5).
  5. По полученным значениям ν 0 и U * вычислите постоянную Планка h = e*U * = eU * / ν 0 и работу выхода A 0 = h*ν 0 . Занесите все значения в таблицу 2.1.

2.5 Контрольные вопросы

  1. Расскажите, как экспериментально определить число фотоэлектронов, покидающих катод за единицу времени, и их начальную кинетическую энергию.
  2. Поясните ход вольт-амперных характеристик фотоэлемента. Пользуясь этими графиками, сформулируйте основные законы фотоэффекта.
  3. Почему электроны вылетают из металла с разными скоростями даже при освещении его монохроматическим светом?
  4. Почему при попытке классического истолкования фотоэффекта мы рассматривали действие на электрон лишь электрического, но не магнитного поля световой волны?
  5. Объясните, в чем состояла новизна эйнштейновской теории фотоэффекта.
  6. Дайте определение работы выхода: сперва в терминах классической, а затем – квантовой физики.
  7. Из опыта известно, что количество выбитых из металла фотоэлектронов в несколько раз меньше фотонов упавших на поверхность катода. Почему? Подумайте, будет ли ток насыщения фотоэлемента зависеть от частоты света, падающего на фотокатод.
  8. Можно ли наблюдая фотоэффект для света с длиной волны λ > λ0, если создать между катодом и анодом не тормозящую, а ускоряющую разность потенциалов?
  9. Работа выхода для металлов составляет обычно несколько электронвольт. Почему же для вырывания электронов электрическим полем из отрицательно заряженного металлического электрода требуется разность потенциалов в сотни тысяч вольт? (Это явление называется холодной, или автоэлектронной эмиссией)
  1. Гольдин Л.Л., Новикова Г.И. Введение в атомную физику. М.: Наука, 1969.
  2. Савельев И.В. Курс общей физики. Т.3. М.: Наука, 1982.
  3. Детлаф А.А., Яворский В.М. Курс физики. М.: Высшая школа, 1989.
Автор методики: Подопригора А.Г.; ВолгГТУ

Законы внешнего фотоэффекта

Наряду с тепловым излучением, явлением которое не укладывается в рамки классической физики, является фотоэффект.

Внешним фотоэффектом называется явление испускания электронов веществом при облучении электромагнитными волнами.

Фотоэффект был открыт Герцем в 1887 году. Он заметил, что искра между цинковыми шариками облегчается, если облучить межискровой промежуток светом. Экспериментально закон внешнего фотоэффектом изучил Столетов в 1888 году. Схема для исследования фотоэффекта приведена на рис.1.

Рис.1.

Катод и анод располагается в вакуумной трубке, так как ничтожные загрязнения поверхности металла влияют на эмиссию электронов. Катод освещается монохроматическим светом через кварцевое окно (кварц, в отличие от обычного стекла, пропускает ультрафиолетовый свет). Напряжение между анодом и катодом регулируется потенциометром и измеряется вольтметром . Две аккумуляторные батареи и , включенные навстречу друг другу, позволяют с помощью потенциометра изменять значение и знак напряжения. Сила фототока измеряется гальванометром .

На рис.2. изображены кривые зависимости силы фототока от напряжения, соответствующие различным освещенностям катода и (). Частота света в обоих случаях одинакова.

где и - заряд и масса электрона.

По мере увеличения напряжения фототок возрастает, так как все большее число фотоэлектронов достигает анода. Максимальное значение фототока, называется фототоком насыщения. Он соответствует таким значениям напряжения, при которых все электроны, выбитые из катода, достигают анода: , где - число фотоэлектронов, вылетающих из катода за 1 секунду.

Столетов опытным путем установил следующие законы фотоэффекта:

При объяснении второго и третьего законов возникли серьезные трудности. Согласно электромагнитной теории, вырывание свободных электронов из металла должно явиться результатом их «раскачивания» в электрическом поле волны. Тогда не понятно, почему максимальная скорость вылетающих электронов зависит от частоты света, а не от амплитуды колебаний вектора напряженности электрического поля и связанной с ней интенсивностью волны. Трудности в истолковании второго и третьего законов фотоэффекта вызвали сомнения в универсальной применимости волновой теории света.

Уравнение Эйнштейна для фотоэффекта

В 1905 году Эйнштейн объяснил законы фотоэффекта с помощью предложенной им квантовой теории. Свет частотой не только излучается, как это предполагал Планк, но и поглощается веществом определенными порциями (квантами). Свет это поток дискретных световых квантов (фотонов), движущихся со скоростью света. Энергия кванта равна . Каждый квант поглощается только одним электроном. Поэтому число вырванных электронов должно быть пропорционально интенсивности света (1 закон фотоэффекта).

Энергия падающего фотона расходуется на совершение электроном работы выхода из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии:

(2)

Уравнение (2) называется уравнением Эйнштейна для внешнего фотоэффекта. Уравнение Эйнштейна позволяет объяснить второй и третий законы фотоэффекта. Из уравнения (2) непосредственно следует, что максимальная кинетическая энергия возрастает с увеличением частоты падающего света. С уменьшением частоты кинетическая энергия уменьшается и при некоторой частоте она становиться равной нулю и фотоэффект прекращается (). Отсюда

где - число поглощенных фотонов.

При этом красная граница фотоэффекта сдвигается в сторону меньших частот:

. (5)

Кроме внешнего фотоэффекта известен еще и внутренний фотоэффект. При облучении твердых и жидких полупроводников и диэлектриков электроны из связанного состояния переходят в свободное, но при этом не вылетают наружу. Наличие свободных электронов приводит к возникновению фотопроводимости. Фотопроводимость это увеличение электропроводности вещества под действием света.

Фотон и его свойства

Явления интерференции, дифракции, поляризации можно объяснить только волновыми свойствами света. Однако фотоэффект и тепловое излучение – только корпускулярными (считая свет потоком фотонов). Волновое и квантовое описание свойств света дополняют друг друга. Свет одновременно волна и частица. Основные уравнения, устанавливающие связь между волновыми и корпускулярными свойствами следующие:

(7)

И - величины характеризующие частицу, и - волну.

Массу фотона найдем из соотношения (6): .

Фотон – это частица, которая всегда движется со скоростью света и имеет массу покоя равную нулю. Импульс фотона равен: .

Эффект Комптона

Наиболее полно корпускулярные свойства проявляются в эффекте Комптона. В 1923 году американский физик Комптон исследовал рассеяние рентгеновских лучей на парафине, атомы которого легкие.

Рассеяние рентгеновских лучей с волновой точки зрения связано вынужденными колебаниями электронов вещества, так что частота рассеянного света должна совпадать с частотой падающего света. Однако в рассеянном свете обнаружилась большая длина волны . не зависит от длины волны рассеиваемых рентгеновских лучей и от материала рассеивающего вещества, но зависит от направления рассеивания. Пусть - угол между направлением первичного пучка и направлением рассеянного света, тогда , где ( м).

Этот закон верен для легких атомов ( , , , ) имеющих электроны, слабо связанные с ядром. Процесс рассеяния можно объяснить упругим столкновением фотонов с электронами. Под действием рентгеновских лучей электроны легко отделяются от атома. Поэтому можно рассматривать рассеяние свободными электронами. Фотон, имеющий импульс , сталкивается с покоящимся электроном и отдает ему часть энергии, а сам приобретает импульс (рис.3).

Рис.3.

Используя законы сохранения энергии и импульса для абсолютно упругого удара, получим для выражение: , которое совпадает с экспериментальным, при этом , что и доказывает корпускулярную теорию света.

Люминесценция, фотолюминесценция и ее основные закономерности

Люминесценция – это неравновесное излучение, избыточное при данной температуре над тепловым излучением. Люминесценция возникает под действием внешних воздействий, не обусловленных нагреванием тела. Это холодное свечение. В зависимости от способа возбуждения различают: фотолюминесценцию (под действием света), хемилюминесценцию (под действием химических реакций), катодолюминесценцию (под действием быстрых электронов) и электролюминесценцию (под действием электрического поля).

Люминесценция прекращающаяся сразу ( с) после исчезновения внешнего воздействия, называется флуоресценцией. Если люминесценция исчезает через с после окончания воздействия, то она называется фосфоресценцией.

Вещества, которые люминесцируют, называются люминофорами. К ним относятся соединения урана, редких земель, а также сопряженные системы, у которых чередуются связи , ароматические соединения: флуоресциин, бензол, нафталин, антрацен.

Фотолюминесценция подчиняется закону Стокса: частота возбуждающего света больше испускаемой частоты , где - часть поглощенной энергии, переходящей в тепловую.

Основной характеристикой люминесценции является квантовый выход равный отношению числа поглощенных квантов к числу излученных. Есть вещества, у которых квантовый выход близок к 1 (например, флуоресциин). У антрацена квантовый выход равен 0,27.

Явление люминесценции получило широкое применение на практике. Например, люминесцентный анализ – метод определения состава вещества по характерному его свечению. Метод очень чувствительный (примерно ), позволяет обнаруживать ничтожное количество примесей и применяется для точнейших исследований в области химии, биологии, медицины и пищевой промышленности.

Люминесцентная дефектоскопия позволяет обнаружить тончайшие трещины на поверхности деталей машин (исследуемая поверхность покрывается для этого люминесцентным раствором, который после удаления остается в трещинах).

Люминофоры используются в люминесцентных лампах, являются активной средой оптических квантовых генераторов, применяются в электронно-оптических преобразователях. Используются для изготовления светящихся указателей различных приборов.

Физические принципы устройства приборов ночного видения

Основу прибора составляет электронно-оптический преобразователь (ЭОП), который преобразует невидимое глазом изображение объекта в ИК лучах в видимое изображение (рис.4).

Рис.4.

1 – фотокатод, 2 – электронная линза, 3 – люминесцирующий экран,

Инфракрасное излучение от объекта вызывает фотоэлектронную эмиссию с поверхности фотокатода, причем величина эмиссии с различных участков последнего изменяется в соответствии с распределением яркости спроецированного на него изображения. Фотоэлектроны ускоряются электрическим полем на участке между фотокатодом и экраном, фокусируются электронной линзой и бомбардируют экран, вызывая его люминесценцию. Интенсивность свечения отдельных точек экрана зависит от плотности потока фотоэлектронов, вследствие чего на экране возникает видимое изображение объекта.

Внешним фотоэлектрическим эффектом (фотоэффектом) называется явление испускания электронов из вещества под действием электромагнитного излучения и, в частности, света. (При внутреннем фотоэффекте при поглощении падающего излучения электроны переходят на более высокие энергетические уровни, оставаясь в пределах вещества).

Простейшая схема для наблюдения фотоэффекта представлена на рис.1.

Свет через окошко попадает внутрь вакуумной стеклянной колбы и падает на металлическую пластинку, играющую роль катода (фотокатода).

Вследствие фотоэффекта с катода будут испускаться электроны (фотоэлектроны), которые будут под действием электрического поля, создаваемого между катодом и анодом, двигаться к аноду. Электроны достигают анода, и в цепи появляется электрический ток I ф , который регистрируется гальванометром G . Напряжение U между катодом и анодом регулируется с помощью потенциометра R и измеряется вольтметром V . С помощью этой схемы были сняты вольтамперные характеристики фотоэффекта (ВАХ) – зависимости силы фототока от напряжения между катодом и анодом. Две ВАХ для двух значений освещенности фотокатода ипоказаны на рисунке 2.

Из кривых мы видим, что при нулевом напряжении фототок не равен нулю. Это значит, что при U =0 некоторая часть вырванных фотоэлектронов долетает до анода. Чтобы уменьшить фототок до нуля необходимо приложить между катодом и анодом задерживающую разность потенциалов (-U З ). При увеличении освещенности E фотокатода сила фототока будет увеличиваться, вольтамперная характеристика идет выше предыдущей. При некотором напряжении, равном U нас (напряжение насыщения), сила фототока достигает насыщения - I нас . Это значит, что при таком напряжении между катодом и анодом все вылетевшие с катода электроны достигнут анода. Из анализа вольтамперных характеристик были установлены следующие экспериментальные закономерности фотоэффекта (законы Столетова).

1. Сила фототока насыщения пропорциональна освещенности фотокатода (или интенсивности падающего света) при частоте света v = const.

=
,
(2)

где γ-коэффициент пропорциональности.

2. Максимальная начальная скорость фотоэлектронов (или максимальная кинетическая энергия) не зависит от интенсивности падающего света и увеличивается с увеличением частоты света.

3. Для каждого вещества существует минимальная частота ν 0 (или максимальная длина волны λ 0 ), при которой ещё происходит вырывание электронов. Если частота света будет меньше ν 0 , то фотоэффект прекратится. Эта частота называется “красной границей” фотоэффекта .

Таким образом, для наблюдения фотоэффекта необходимо выполнения условия: νν 0 (λλ 0).

Наблюдаемые в опыте закономерности фотоэффекта оказалось невозможно объяснить с позиции классических или волновых представлений. Например, независимость скорости вылета фотоэлектронов от интенсивности света, поскольку с увеличением интенсивности падающей световой волны электронам должна бы передаваться бóльшая энергия. Невозможно также объяснить безинерционность фотоэффекта и наличие “красной границы”.

Качественное непротиворечивое объяснение фотоэффекта было дано A.Эйнштейном в 1905 году на основе предложенной им квантовой теории фотоэффекта. В соответствии с этой теорией кванты света (фотоны) ведут себя подобно материальным частицам. Падающее монохроматическое излучение рассматривается как поток световых квантов - фотонов с энергией E =hν . Поглощение веществом света сводится к тому, что один фотон передаёт полностью свою энергию одному электрону вещества. Если эта энергия фотона достаточна, чтобы освободить электрон от удерживающих его внутри вещества связей, то происходит эмиссия электрона. Следовательно, число фотоэлектронов должно быть пропорционально числу поглощённых фотонов (что согласуется с первым законом Столетова). Энергия фотона увеличивается с частотой ν и, следовательно, энергия фотоэлектронов также должна увеличиваться с частотой падающего света, что согласуется также с опытом. Полученная электроном вещества энергия фотона перераспределяется следующим образом. Часть этой энергии, называемой работой выхода А , затрачивается на то, чтобы освободить электрон от удерживающих его внутри металла связей. Если фотон поглощается электроном не у самой поверхности металла, а на некоторой глубине, то часть энергии фотона, равная Е потерь , может быть рассеяна вследствие случайных столкновений электрона в веществе. Остаток энергии образует кинетическую энергию К электрона, покинувшего вещество. Таким образом

hν= А + Е потерь + К (3)

Для тех электронов, у которых Е потерь = 0, кинетическая энергия будет максимально возможной при А = const для данного металла. Для таких электронов равенство (3) перепишем в виде

(4)

Это выражение называется уравнением Эйнштейна для внешнего фотоэффекта. Оно выполняет роль закона сохранения энергии для фотоэффекта.

Из уравнения Эйнштейна следуют рассмотренные выше экспериментальные законы фотоэффекта. Например, из формулы (4) непосредственно вытекает второй закон Столетова

= hν – А (A= const).

Из уравнения (4) следует, что если уменьшать частоту падающего света v , то будет уменьшаться энергия фотона
, соответственно, будет уменьшаться кинетическая энергия фотоэлектронов при A = const для данного металла. Тогда при некотором значении частоты света v = кинетическая энергия фотоэлектронов станет равной нулю, и фотоэффект прекратится. Тогда из уравнения (4) следует

h= A + 0,

= (5)

То есть, существует некоторая граничная частота («красная граница») падающего света, ниже которой свет не вызывает фотоэффект. Этот вывод находится в соответствии с эмпирическим третьим законом фотоэффекта.

Выражение (5) определяет связь красной границы фотоэффекта с работой выхода. Работа выхода электронов из металла в сильной степени зависит от состояния поверхности металла, например, от находящихся на поверхности оксидов и адсорбированных газов. Поэтому долгое время не удавалось проверить с достаточной точностью формулу Эйнштейна.

Еще одной важной характеристикой фотоэффекта является спектральная чувствительность фотокатода, которая показывает зависимость чувствительности катода
от длины волныизлучения, падающего на фотокатод. Величиной, пропорциональной чувствительности фотокатода, является фототок. Таким образом, на практике для получения спектральной характеристики можно снимать зависимость фототока от длины волны (или от частоты) падающего на фотоэлемент (или фотокатод) монохроматического излучения. При больших длинах волн, то есть при малых энергиях квантов света, энергия, получаемая электроном, оказывается недостаточной для преодоления работы выхода и эмиссии электронов в вакуум. Поэтому для каждого металла существует его пороговая длина волны (наибольшая λ 0 =λ max) или пороговая частота (наименьшая ν 0 =ν max), которую мы выше определили как «красную границу» фотоэффекта. При малых длинах волн возрастает показатель поглощения. Поэтому глубина проникновения квантов света в металл уменьшается, и вероятность передачи энергии кванта света свободному электрону металла уменьшается. Таким образом, спектральная характеристика имеет вид кривой с максимумом, со спадом при малых длинах волн (рис.3).

Различные вещества имеют разную работу выхода, поэтому максимум спектральной характеристики фотокатода может находиться в той или иной части электромагнитного спектра.

Таким образом, фотоэлемент, иcпользуемый в лабораторной работе, является селективным фотоприёмником, то есть он “чувствует” излучение в строго определённой области спектра от λ 1 до λ 2 .

ФОТОЭФФЕКТ, группа явлений, связанных с освобождением электронов твердого тела от внутриатомной связи под действием электромагнитного излучения. Различают: 1) внешний фотоэффект, или фотоэлектронная эмиссия, испускание электронов с поверхности… … Современная энциклопедия

Явление, связанное с освобождением электронов твердого тела (или жидкости) под действием электромагнитного излучения. Различают:..1) внешний фотоэффект испускание электронов под действием света (фотоэлектронная эмиссия), ? излучения и др.;..2)… … Большой Энциклопедический словарь

Испускание эл нов в вом под действием эл. магн. излучения. Ф. был открыт в 1887 нем. физиком Г. Герцем. Первые фундам. исследования Ф. выполнены А. Г. Столетовым (1888), а затем нем. физиком Ф. Ленардом (1899). Первое теоретич. объяснение законов … Физическая энциклопедия

Сущ., кол во синонимов: 2 фото эффект (1) эффект (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

фотоэффект - — [В.А.Семенов. Англо русский словарь по релейной защите] Тематики релейная защита EN photoeffect … Справочник технического переводчика

ФОТОЭФФЕКТ - (1) вентильный возникновение электродвижущей силы (фотоЭДС) между двумя разнородными полупроводниками или между полупроводником и металлом под действием электромагнитного излучения; (2) Ф. внешний (фотоэлектронная эмиссия) испускание электронов с … Большая политехническая энциклопедия

А; м. Физ. Изменение свойств вещества под воздействием световой энергии; фотоэлектрический эффект. * * * фотоэффект явление, связанное с освобождением электронов твёрдого тела (или жидкости) под действием электромагнитного излучения. Различают:… … Энциклопедический словарь

Испускание электронов веществом под действием электромагнитного излучения (Фотонов). Ф. был открыт в 1887 Г. Герцем. Первые фундаментальные исследования Ф, выполнены А. Г. Столетовым (1888). Он установил, что в возникновении фототока в… … Большая советская энциклопедия

- (см. фото... + аффект) физ. изменение электрических свойств вещества под действием электромагнитных излучений (света, ультрафиолетовых, рентгеновских и других лучей), напр, испускание электронов вовне под действием света (внешний ф.), изменение… … Словарь иностранных слов русского языка

Книги

  • , П.С. Тартаковский. Воспроизведено в оригинальной авторской орфографии издания 1940 года (издательство`ГИТТЛ`). В…
  • Внутренний фотоэффект в диэлектриках , П.С. Тартаковский. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Воспроизведено в оригинальной авторской орфографии издания 1940 года (издательство "ГИТТЛ"…