Типы струйной печати: термоструйная и пьезоэлектрическая. Струйная технология печати

Струйные принтеры сегодня одни из наиболее популярных среди потребителей. Причем в большинстве случаев такой принтер покупается в качестве периферии к домашнему компьютеру. На то есть свои резоны, и в первую очередь низкая цена и возможность печати цветных документов. Между тем, как утверждают продавцы ряда салонов компьютерной техники, большинство пользователей имеет более чем смутное представление о принципах струйной печати. Если с работой матричных или лазерных принтеров их владельцам все более-менее ясно, то про струйные принтеры они, как правило, только и могут сказать, что картинка там формируется путем разбрызгивания по бумаге мелких капель чернил.

Для начала, наверное, стоит объяснить, что представляет собой такой показатель, как dpi, который, оказывается, более важен, чем, к примеру, скорость печати. DPI (dot per inch, то есть точек дюйм) - это так называемое число капель на дюйм, функция от частоты, с которой выбрасываются капли, и скорости, с которой печатающая головка принтера перемещается по горизонтальной оси. Управляемое сопло в определенные моменты дискретно выбрасывает капли чернил и таким образом проводит линию. Главная трудность для производителя принтеров состоит в сочетании качества (максимум выбросов капель на строку) и скорости (минимум выбросов капель на строку для достижения более высокой скорости). Скорость выброса капель составляет от 10 до 20 тыс. в секунду. Изменяя эту частоту или скорость перемещения каретки печатающей головки, можно достичь оптимальной плотности горизонтального размещения капель, а значит, и качества печати.

Разрешение - это параметр, определяемый размером чернильных капель. При нанесении более мелких капель четкость изображения будет выше, если сравнивать с равной по площади поверхностью, заполненной меньшим количеством более крупных капель. Понятно, что в таком случае более высокое качество потребует меньшей скорости печати, и наоборот.

Струйные принтеры различаются по способу печати.

Достаточно широко распространены три основных способа печати.

Термоструйная печать

Разработка термической технологии струйной печати началась еще в 1984 году. Первопроходцами тогда стали компании HP и Canon. Но дело шло медленно, и придти к необходимым результатам долгое время не удавалось. Только в 90-х годах удалось наконец добиться приемлемого уровня качества, скорости работы и стоимости. Позже к HP и Canon с целью дальнейшей работы над термическими принтерами присоединилась компания Lexmark, что и привело к созданию сегодняшних принтеров с высоким разрешением.

Как видно из названия, в основе термического (правильнее сказать, электротермического) формирования струи лежит увеличение температуры жидких чернил под действием электрического тока. Это повышение температуры обеспечивается нагревательным элементом, который находится в эжекционной камере. При нагревании некоторая часть чернил испаряется, в камере быстро нарастает избыточное давление, и из эжекционной камеры через прецизионное сопло выбрасывается маленькая капелька чернил. В течение одной секунды этот процесс многократно повторяется. Самое главное для успеха данной технологии. это максимально точно подобрать конфигурацию эжекционной камеры, а также диаметр и точность сопла. На поведение чернил при нагревании и выбросе их из сопла наряду с характеристиками самих чернил (их вязкостью, поверхностным натяжением, способностью к испарению и др.) оказывают влияние также характеристики канала, ведущего к соплу, и точки выхода в сопло. Большое значение для обеспечения правильного выброса чернил из сопла имеют также характер изменения чернильного мениска в сопле после эжекции и повторное заполнение эжекционной камеры. Рассмотрим поподробнее этапы формирования и выброса капли. Формирование термической чернильной струи начинается в печатающей головке картриджа. Электрический импульс порождает на нагревательных элементах тепловой поток, эквивалентный более чем двум млрд ватт на квадратный метр. Это примерно в 10 раз больше, чем поток на поверхности Солнца. Однако, поскольку длительность теплового импульса составляет всего 2 миллионных доли секунды, то, хотя температура в это время увеличивается со скоростью 300 млн градусов в секунду, поверхность нагревательного элемента успевает за это время нагреться лишь примерно до 600°C. Поскольку нагревание идет чрезвычайно быстро, в реальности температура, при которой чернила уже не могут существовать в виде жидкости, достигается лишь в слое толщиной менее одной миллионной доли миллиметра. При такой температуре (примерно 330°C) тонкий слой чернил начинает испаряться, и происходит выталкивание пузырька из сопла. Пузырек пара образуется при очень высокой температуре, и поэтому давление пара в нем составляет порядка 125 атмосфер, т.е. в четыре раза больше давления, создаваемого в современных бензиновых двигателях внутреннего сгорания. Такой пузырек, обладающий громадной энергией, действует как поршень, выбрасывающий чернила из сопла на страницу со скоростью 500 дюймов в секунду. Образующаяся при этом капля весит всего 18 миллиардных долей грамма. По командам, поступающим от драйвера принтера, несколько сотен сопел могут активизироваться одновременно в любых сочетаниях. Резервуары, из которых чернила подаются в печатающую головку, можно условно разделить на два конструктивных типа. Во-первых, широко используется моноблочная система, объединяющая встроенный чернильный резервуар и эжекционный блок. Она обладает тем преимуществом, что при каждой смене чернильного резервуара заменяется и печатающая головка, что способствует поддержанию высокого качества печати. Кроме того, она проще по конструкции, и в ней легче выполняются замены. Во второй, конструктивно более сложной системе печатающая головка отделена от резервуара для чернил, и здесь заменяется только этот резервуар при его опорожнении. Пена в резервуаре для чернил играет роль губки, впитывающей жидкие чернила, так что чернила непрерывно подаются к печатающей головке, и при этом нет ни нежелательной утечки из картриджа под действием силы тяжести, ни истечения чернил из самой печатающей головки. На основании моноблочного картриджа находятся электрические контакты и печатающая головка. ключевой элемент всего процесса струйной печати; чернила подаются к печатающей головке через совокупность каналов, идущих от резервуара. Изготовление печатающей головки. это сложный процесс, осуществляемый на микроскопическом уровне, где точность измерений определяется микронами. Основные материалы, используемые для изготовления эжекционной камеры, канала для подачи чернил, электронной управляющей схемы и нагревательных элементов, подобны материалам, используемым в полупроводниковой промышленности, где тончайшие проводящие металлические и изолирующие слои проходят прецизионную лазерную обработку. Такая технология требует больших инвестиций и в разработку, и в производство, и это одна из главных причин того, что в данной сфере решаются действовать очень немногие компании. Печатающая головка представляет собой совокупность множества микро комплектов, состоящих из эжекционных камер и связанных с ними сопел, расположенных в шахматном порядке с целью увеличения вертикальной плотности сопел. При таком расположении сопел их число на расстоянии примерно 1,27 см может достигать 208, как это имеет место, например, в черных картриджах моделей Lexmark Z, так что удается достичь разрешения в 1,44 млн точек. Качество печати определяется многими факторами, но главные из них. это размер точки, вертикальная плотность точек и частота выброса капель через сопло; именно эти показатели являются основными критериями для дальнейшей работы над печатающими головками, будь то головки термического или пьезоэлектрического типа. Термические головки имеют некоторые преимущества по сравнению с электромеханическими, поскольку ключевая технология их изготовления подобна той, которая применяется при изготовлении микропроцессорных чипов и других изделий полупроводниковой электроники. Стремительный прогресс в этих областях идет на пользу термической технологии, и можно ожидать, что в ближайшие годы будут достигнуты еще более высокие разрешения и более высокая скорость печати. Термическая струйная печать имеет несколько преимуществ по сравнению с конкурирующей с ней пьезотехнологией. Например, простота конструкции и тесная аналогия с производством полупроводников: это означает, что предельная себестоимость в производстве здесь будет ниже, чем для конкурирующей технологии. Конфигурация эжекционных камер позволяет располагать сопла ближе друг к другу, что дает возможность достигать более высокого разрешения.

Пьезоэлектрическая технология

Пьезоэлектрическая система, созданная на базе электромеханического устройства и доведенная до коммерческой готовности компанией Epson, впервые была использована в струйных принтерах Epson не так давно. в 1993 году. В основе пьезотехнологии лежит свойство некоторых кристаллов, называемых пьезокристаллами (примером могут служить кристаллы кварца в распространенных кварцевых наручных часах), деформироваться под действием электрического тока; таким образом, этот термин определяет электромеханическое явление. Это физическое свойство позволяет использовать некоторые материалы для создания миниатюрного "чернильного насоса", в котором смена положительного напряжения на отрицательное будет вызывать сжатие небольшого объема чернил и энергичный выброс его через открытое сопло. Как и при формировании чернильной струи за счет термических эффектов, размер капли здесь определяется физическими характеристиками эжекционной камеры и давлением, создаваемым в этой камере за счет деформации пьезокристалла. Изменение размера капли осуществляется путем изменения величины тока, протекающего через эжекционный механизм. Как и в термопринтерах, частота выброса под действием пьезоэффекта зависит от потенциальной частоты электрических импульсов, которая, в свою очередь, определяется временем возвращения камеры в "спокойное" состояние, когда она заполнена чернилами и готова к следующему рабочему циклу. Пьезотехнология отличается высокой надежностью, что очень важно, потому что печатающая головка по чисто экономическим причинам не может быть частью сменного картриджа с чернилами, как в термических системах, а обязательно должна быть жестко соединена с принтером. Как у термических, так и у пьезоэлектрических систем качество работы определяется многими факторами. Возможность изменения размера точки дает пьезотехнологии определенные преимущества. С другой стороны, пьезотехнология сталкивается с некоторыми чисто физическими ограничениями. Например, большие размеры электромеханической эжекционной камеры означают, что плотность размещения сопел по вертикали должна быть меньше, чем у термических аналогов. Это не только ограничивает перспективы дальнейшей разработки, но означает также, что для получения более высокого разрешения и однородности при высококачественной печати требуется несколько проходов печатающей головки по одной и той же странице.

Стационарная печатающая головка в определенной мере экономически выгодна, потому что ее не приходится менять. Однако это преимущество частично обесценивается тем, что существует опасность проникновения воздуха в систему при смене картриджа. При этом сопла закупориваются, качество печати ухудшается, и для восстановления нормальной работоспособности системы требуется провести несколько циклов очистки. Еще одно существующее пока ограничение для пьезосистем касается использования чернил на основе красителей: при использовании цветных (пигментных) чернил, которые имеют более высокое качество, но при этом обладают и более высокой плотностью, также возникает опасность закупорки сопел. Пьезоэлектрическая печатающая головка, сконструированная на основе ранее существовавшей технологии, отличается более низкими расходами на разработку, но зато она заметно дороже в изготовлении. В настоящее время такие преимущества пьезоэлектрических головок, как высокая надежность и возможность изменения размеров капли, весьма существенны и позволяют изготовлять продукцию очень высокого качества. Однако, поскольку цены на термические струйные принтеры непрерывно снижаются, и они все больше захватывают рынок принтеров начального уровня, то для пьезосистем остается рынок продукции среднего и высшего класса.

Пузырьково-струйная печать

Принцип пузырьково-струйной печати Canon Bubble-Jet, изобретённый в конце 70-х, до гениального прост. В каждой дюзе, тончайшем канале, в котором формируются капельки чернил, расположен микроскопический нагреватель. Электрические импульсы, подаваемые на него, заставляют чернила вскипать с образованием воздушных пузырьков, и эти пузырьки с каждым импульсом выталкивают равные объёмы чернил из дюзы. Нагрев прекращается, пузырёк исчезает, в дюзу втягивается новая порция чернил, и она готова к новому циклу!

Однако, понадобилось около 8 лет, чтобы первый пузырьково-струйный принтер стал доступен пользователям. В 1981 году перспективная технология Canon Bubble-Jet впервые была представлена на выставке Canon Grand Fair и сразу приковала к себе внимание специалистов. Но лишь в 1985-ом появилась первая коммерческая модель монохромного принтера Canon BJ-80, а первый полноцветный BJ-принтер BJC-440 (формата A2, с разрешением 400 точек на дюйм) появился в 1988 году.

ПЬЕЗОЭЛЕКТРИЧЕСКАЯ СТРУЙНАЯ ТЕХНОЛОГИЯ.

Самые распространенные сегодня плоттеры основаны на струйной технологии: измельченный краситель в виде капель распыляется на материал. Обычно, как и в матричных принтерах, печатающая головка движется поперек направления подачи носителя, формируя полосу изображения, а затем носитель сдвигается для печати следующей полосы. Однако вместо иголок в головке имеется множество сопел для выбрасывания краски.
В струйной технологии сложились две разновидности:
. термоструйная , в которой активизация краски и ее выброс происходят под действием нагрева;
. пьезоэлектрическая , в которой выброс краски происходит под давлением, создаваемым колебанием мембраны.

Пьезоэлектрическая струйная технология.

Пьезоэлектрическая система, созданная на базе электромеханического устройства и доведенная до коммерческой готовности компанией Epson (дочерняя компания Seiko), впервые была использована в струйных принтерах Epson в 1993 г.

Система выброса капли.

В основе пьезотехнологии лежит свойство некоторых кристаллов, называемых пьезокристаллами (примером могут служить кристаллы кварца в распространенных теперь кварцевых наручных часах), деформироваться под действием электрического тока; таким образом, этот термин определяет электромеханическое явление. Это физическое свойство позволяет использовать некоторые материалы для создания миниатюрного «чернильного насоса», в котором смена положительного напряжения на отрицательное будет вызывать сжатие небольшого объема чернил и энергичный выброс его через открытое сопло. Как и при формировании чернильной струи за счет термических эффектов, размер капли здесь определяется физическими характеристиками эжекционной камеры (firing chamber) и давлением, создаваемым в этой камере за счет деформации пьезокристалла.


Модуляция, т. е. изменение размера капли , осуществляется путем изменения величины тока, протекающего через эжекционный механизм. Как и в термопринтерах, частота выброса под действием пьезоэффекта зависит от потенциальной частоты электрических импульсов, которая, в свою очередь, определяется временем возвращения камеры в «спокойное» состояние, когда она заполнена чернилами и готова к следующему рабочему циклу. Пьеззотехнология отличается высокой надежностью , что очень важно, потому что печатающая головка, по чисто экономическим причинам, не может быть частью сменного картриджа с чернилами, как в термических системах, а обязательно должна быть жестко соединена с принтером.

Преимущества и недостатки.

Как у термических, так и у пьезоэлектрических систем качество работы определяется многими факторами. Возможность изменения размера точки дает пьезотехнологии определенные преимущества. С другой стороны, пьезотехнология сталкивается с некоторыми чисто физическими ограничениями. Например, большие геометрические размеры электромеханической эжекционной камеры означают, что плотность размещения сопел по вертикали должна быть меньше, чем у термических аналогов. Это не только ограничивает перспективы дальнейшей разработки, но означает также, что для получения более высокого разрешения и однородности при высококачественной печати требуется несколько проходов печатающей головки по одной и той же странице.
Стационарная печатающая головка в определенной мере экономически выгодна, потому что ее не приходится менять. Однако это преимущество частично обесценивается тем, что существует опасность проникновения воздуха в систему при смене картриджа. При этом сопла закупориваются, качество печати ухудшается, и для восстановления нормальной работоспособности системы требуется провести несколько циклов очистки. Еще одно существующее пока ограничение для пьезосистем касается использования чернил на основе красителей (dye based inks): при использовании пигментных чернил, которые имеют более высокое качество, но при этом обладают и более высокой плотностью, также возникает опасность закупорки сопел.

Перспективы.

Пьезоэлектрическая печатающая головка, сконструированная на основе ранее существовавшей технологии, отличается более низкими расходами на разработку, но зато она заметно дороже в изготовлении. В настоящее время такие преимущества пьезоэлектрических головок как высокая надежность и возможность изменения размеров капли весьма существенны и позволяют изготовлять продукцию очень высокого качества. Однако поскольку цены на термические струйные принтеры непрерывно снижаются и они все больше захватывают рынок принтеров начального уровня, то для пьезосистем остается рынок продукции среднего и высшего класса.

Преимущества и недостатки.

Термическая система

Пьезоэлектрическая система

Размеры эжекционного устройства

Очень малые

Средние

Стоимость изготовления

Невысокая

Высокая

Срок службы эжекционного устройства

Средний

Большой

Изменение размера капли

Сложно

Просто

Плотность чернил

Хорошая

Средняя

Сложность эжекционного устройства

Низкая

Высокая

Скорость печати

Высокая

Средняя

Качество печати фотографий

Хорошее

Хорошее

Качество черно-белого текста

Хорошее

Средняя

Энергия выброса капли

Высокая

Низкая

РАЗРЕШЕНИЕ - ЗНАК КАЧЕСТВА.

Вертикальное разрешение.

Число вертикальных позиций связано, прежде всего, с числом вертикально расположенных сопел на печатающей головке (линий на дюйм). Поскольку существуют трудности при создании печатной головки, включающей элементы, которые охватывают сразу две вертикальные линии, то два отдельных ряда сопел размещаются рядом друг с другом.
Для достижения приемлемой скорости печати во время каждого прохода печатающей головки должно быть напечатано максимальное число линий. В этой ситуации производитель должен сделать выбор между скоростью (более высокая печатная головка и максимальное число сопел) и производственными затратами (минимальное число сопел).
При четырехцветной печати (три цвета плюс черный) высота печатающего элемента для каждого цвета составляет около трети высоты печатающего элемента для черного цвета .

Горизонтальное разрешение.

Число горизонтальных позиций, так называемое число капель на дюйм (dpi), является функцией от частоты, с которой выбрасываются капли, и скорости, с которой печатающая головка перемещается по горизонтальной оси. Управляемое сопло в определенные моменты дискретно выбрасывает капли чернил и таким образом проводит линию. Главная трудность для производителя состоит в сочетании качества (максимум выбросов капель на строку) и скорости (минимум выбросов капель на строку для достижения более высокой скорости). Скорость выброса капель составляет от 10 до 20 тыс. в секунду. Изменяя эту частоту или скорость перемещения каретки печатающей головки, можно достичь оптимальной плотности горизонтального размещения капель.

ФИЗИОЛОГИЧЕСКИЕ ФАКТОРЫ.

Цветовое восприятие.

Ощущение качества цветного документа тесно связано с физиологией человеческого зрения. С учетом некоторых индивидуальных отклонений глаз человека способен различать только цвета, имеющие длину волн в диапазоне от 380 нм (фиолетовый) до 780 нм (красный). Внутри этого спектра мозг человека может различить около миллиона оттенков цветов (опять же с небольшими индивидуальными различиями).
Воспринимаемый цветовой спектр играет важную роль при зрительной оценке различий в качестве печати документов: принтеры, способные воспроизводить большее число оттенков цвета, будут создавать документы, которым человеческое зрение будет субъективно приписывать более высокое качество.

Минимальный размер видимого элемента.

Разрешение - это параметр, определяемый размером чернильных капель. При нанесении более мелких капель четкость изображения будет выше, если сравнивать с равной по площади поверхностью, заполненной меньшим количеством более крупных капель. Однако у этого правила имеется ограничение, связанное с порогом восприятия человеческим глазом объекта, удаленного на комфортную для обзора дистанцию: есть большая вероятность, что чернильную каплю объемом менее 2-х пиколитров(10 в -12 степени) наблюдатель просто будет не способен увидеть.

Объективные факторы.

Не все на свете субъективно, поэтому число печатаемых элементов позволяет нам дать количественную оценку качества документа, начав с разрешения, которое определяется размером чернильной капли и общим числом капель, которые можно нанести на страницу.

Печатная матрица.

Каждый напечатанный на странице элемент называется элементарной точкой или в некоторых случаях пикселом. При двоичной растровой печати точка отождествляется с каплей чернил, т.е. чернильное пятно присутствует (что эквивалентно черной точке) или отсутствует (белая точка).

Полутоновая печать.

Полутоновая печать, также известная как шкала уровней серого цвета, дает возможность увеличить число оттенков серого цвета при монохромной печати, и таким образом передавать различные цвета с помощью оттенков серого (задаваемых процентным содержанием черного цвета). Элементарная точка в этом случае представляет композицию из нескольких капель. Комбинация нескольких элементарных точек разного типа дает возможность печатать разнообразные оттенки серого цвета.

Число возможных полутонов серого цвета равно числу капель, из которых можно образовать элементарную точку + 1 (отсутствие капли эквивалентно белому цвету). К примеру, четыре заполняемых чернилами позиции на одну элементарную точку задают 5 возможных оттенков (уровней) серого цвета. Объединение таких элементарных точек создает градуированное затенение (шкалу оттенков серого цвета).

Число цветов.

Общее число возможных цветов, в которые может быть окрашена элементарная точка, соответствует числу адресуемых элементарных цветов. При трех основных цветах можно получить восемь базовых цветов: голубой (Cyan), пурпурный (Magenta), желтый (Yellow), красный (Cyan + Yellow), зеленый (Yellow + Cyan), синий (Cyan + Magenta), белый и черный цвета. Эта система двоична, поскольку цветовые точки могут присутствовать или нет. Если мы применим принцип полутоновой серой шкалы к этим трем основным цветам, создавая таким образом цветовые оттенки, мы получим 256 оттенков для каждого из трех основных цветов и таким образом 256 в третьей степени возможных цветовых комбинации на один точечный элемент. Другими словами, это число больше, чем может различить глаз человека.

Размер капли.

Размер капли представляет сложную функцию от давления, с которым выбрасываются чернила, и диаметра сопла. Обычно размер капли сохраняется неизменным. В определенных случаях размер может изменяться, и эта технология известна как печать с изменяемым размером капли. Существует определенная связь между размером капли и размером точки, воспроизводимой на бумаге. Теоретически, капля размером 20 пиколитров соответствует точке размером 60 микрон (это приблизительно равно одной четырехсотой части дюйма), тогда как капля размером 2 пиколитра поставит точку 30 микрон, едва видимую человеческим глазом.

Матрица разрешения.

Разрешение - это параметр, наиболее просто поддающийся количественной оценке при определении качества печати документа. Разрешение оценивает точность, с которой точки располагаются на странице.


Матрица разрешения задает для любой заданной точки общее число возможных позиций. При технологии печати с двойной печатной головкой могут быть две различные матрицы: одна для цветной печати, а другая для черно-белой. Матрица позволяет создавать цветовые уровни для каждой элементарной точки. Поскольку разрешение является результатом совмещения двух различных технологических процессов, то горизонтальное и вертикальное разрешение могут отличаться.

Новейшим достижением в струйной печати является горизонтальное разрешение 2400 dpi, которое дает возможность разместить 2400 печатных матриц на дюйм печатной строки, что вдвое превосходит наиболее распространенный в настоящее время стандарт.

Благодаря точности печати и микроскопическому размеру капли 7 пиколитров достигаются столь высокие результаты, что растр изображения становится абсолютно неразличим для человеческого зрения. Разрешение 2400 dpi таким образом предназначается для печати документов, требующих максимально высокого разрешения и безупречного качества. Поскольку скорость печати в большой степени зависит от количества печатаемых точек, то при печати с разрешением 2400 x 1200 скорость будет несколько меньше, чем при печати с более низким разрешением.

Принцип работы пьезоэлектрических печатных головок.

В основе сопла лежит пьезоэлемент (как правило кристалл кварца). Как известно из школьного курса физики если кристалл кварца колебать с определенной частотой, то на гранях кристалла вырабатывается напряжение, также справедливо и обратное правило, если к граням кристалла приложить напряжение, то он начнет вибрировать с определенной частотой. Ниже приведенная схема наглядно иллюстрирует принцип работы одного из сопел печатной головки.

Верхний рисунок показывает сопло в состоянии покоя. Синим цветом указан пьезоэлемент, малиновым - канал подачи краски, выходное отверстие сопла находится слева. Серым указано керамическое основание печатающий головки.


На среднем рисунке показано сопло с пьезоэлементом в состоянии возбуждения. Под воздействием напряжения кристалл изгибается, из-за чего увеличивается объем камеры подачи краски. Краска поступающая в печатную головку под небольшим давлением заполнят весь объем камеры сопла.


На нижнем рисунке показано сопло, после снятия напряжение с граней кристалла и возврата его в состояние покоя, в результате чего происходит выброс капли краски.
В процессе печати пьезокристалл колеблется с частой 4-9 кГц (на разных типах головок частота вибрации различна), чем выше частота вибрации, тем выше качество и/или быстрее линейная скорость печати.

Что такое "истинное разрешение".

Пьезоэлектрические струйные головки нового поколения, обеспечивающие истинное разрешение 720 x 720 dpi.


Полноцветные (CMYK) принтеры оснащены долгоживущими головками нового поколения, позволяющими печатать с истинным разрешением 720 x 720 dpi и достигать фотореалистической передачи изображений на высокой скорости.


На следующих иллюстрациях наглядно представлены преимущества струйной печати с истинным разрешением 720 dpi.


Преимущества при печати линий с истинным разрешением 720 dpi по сравнению с разрешением 600 dpi. (Слева 6 точек в разрешении 720 х 720 dpi. Справа 5 точек в разрешении 600 х 600 dpi.) Сравнивая печать линий с истинным разрешением 720 dpi с печатью с истинным разрешением 600 dpi мы видим, что на каждые 5 точек добавляется шестая, что увеличивает качество печати в 1,2 раза. Визуально это отражается в уменьшении ступенчатого эффекта при печати линий; тем самым скорость струйного плоттера комбинируется с качеством перьевого.


Преимущества цветной печати с разрешением в 720 x 720 dpi (справа) против цветной печати с разрешением в 300 x 300 dpi (слева).

Расположение точек при разрешении Расположение точек при разрешении
300 x 300 dpi - 25 точек
720 x 720 dpi - 144 точки

При разрешении в 720 x 720 dpi печатается в 5,76 больше точек, чем при разрешении в 300 x 300 dpi на единицу площади. В сочетании с интеллектуальной RIP-программой мы можем добиваться фотореалистического качества печати.


Преимущества при цветной печати с истинным разрешением 720 dpi по сравнению с "адресуемым" разрешением 600 dpi. (Слева - истинное разрешение 720 х 720 dpi; 6 точек. Справа - "адресуемое" разрешение 600 dpi; 4 точки). Некоторые производители добиваются эффекта разрешения в 600 dpi размещая точки, печатаемые при разрешения 300 dpi, настолько часто, что они перекрывют друг друга, тем самым достигая эффекта печати в 600 dpi. Эта техника называется "адресуемым разрешением в 600 dpi". Эта техника расширяет возможности печати с разрешением в 300 dpi, но все равно не сравнится с истинным разрешением в 720 dpi принтеров семейства Falcon. Каждые 4 точки, распечатываемые при разрешении 600 dpi, плоттеры RJ-800, RJ-4000/RJ-4000P заменяют 6 точками, повышая разрешение до 720 dpi. Размер этих точек меньше и размещены они более точно, что не только повышает в 1,5 раза плотность печати, но и делает распечатку более приятной на вид за счет улучшения качества линий.

На рынке струйных печатающих устройств распространены две основные технологии печати: пьезоэлектрическая и термоструйная.

Отличия данных систем состоят в способе вывода капли чернил на бумагу.


Пьезоэлектрическая технология была основана на способности пьезокристаллов к деформации под воздействием на них электрического тока. Благодаря использованию данной технологии осуществляется полный контроль печати: определяется размер капли, толщина струи, скорость выброса капли на бумагу и т.д. Одним из множества преимуществ данной системы является возможность управления размером капли, что позволяет получать отпечатки высокого разрешения.

Доказано, что надежность пьезоэлектрической системы значительно выше в сравнении с другими системами струйной печати.

Качество печати при использовании пьезоэлектрической технологии чрезвычайно высокое: даже универсальные недорогостоящие модели позволяют получить отпечатки практически с фотографическим качеством и высоким разрешением. Также достоинством печатающих устройств с пьезоэлектрической системой считается естественность цветопередачи, что становится действительно важно при печати фотографий.

Печатающие головки струйных принтеров EPSON обладают высоким уровнем качества, чем и объясняется их высокая стоимость. При пьезоэлектрической системе печати обеспечивается надежная работа печатающего устройства, а печатающая головка крайне редко выходит из строя и устанавливается на принтер, а не является частью сменных картриджей.

Пьезоэлектрическая система печати была разработана компанией EPSON, она запатентована и ее использование запрещено другим производителям. Поэтому единственные принтеры, которые используют данную систему печати, - это EPSON.

Термоструйная технология печати используется в принтерах Canon, HP, Brother. Подача чернил на бумагу осуществляется посредством их нагревания. Температура нагрева может составлять до 600°С. Качество термоструйной печати на порядок ниже пьезоэлектрической, всвязи с невозможностью проконтролировать процесс печати из-за взрывного характера капли. В результате такой печати часто возникают сателлиты (капли-спутники), которые мешают получить высокое качество и четкость отпечатков, приводя к искажению. Этого недостатка невозможно избежать, так как он заложен в самой технологии.

Еще одним недостатком термоструйного способа является образование накипи в печатающей головке принтера, так как чернила являются ничем иным как совокупностью химических веществ, растворенных в воде. Образовующаяся накипь со временем забивает дюзы и существенно портит качество печати: принтер начинает полосить, ухудшается цветопередача и т.д.

Из-за постоянных перепадов температуры в устройствах, использующих термоструйную технологию печати, постепенно разрушается печатающая головка (сгорает под действием высокой температуры при перегреве термоэлементов). Это является главным недостатком таких устройств.
Срок службы печатающей головки принтеров EPSON такой же, как и самого устройства, благодаря высокому качеству изготовления ПГ. Пользователям же устройств с термоструйной печатью придется каждый раз покупать новую печатающую головку и производить замену, что не только уменьшает долговечность принтера, но и существенно увеличивает затраты на печать.
Качество печатающей головки имеет значение и при использовании неоригинальных расходных материалов, в частности СНПЧ.

Использование СНПЧ позволяет пользователю на 50% увеличить объемы печати.
Печатающая головка принтеров EPSON, как уже не раз упоминалось в данной статье, имеет высокое качество, засчет чего увеличение объемов печати не сказывается негативным образом на работе принтера, а наоборот позволяет пользователю получить максимум экономии без ухудшения качества печати.

Ввиду особенностей печатающих устройств, использующих термоструйную технологию, увеличение объемов печати может привести к выходу ПГ принтера из строя.

Как показывают наблюдения, для получения максимальной экономии при совершенном качестве печати целесообразней использовать печатающие устройства EPSON с СНПЧ. Принтеры EPSON работают с системой непрерывной подачи чернил стабильней, чем печатающие устройства других производителей.

Для обычного потребителя, при покупке принтера, основной выбор постает перед струйным и лазерным принтером. Оба принтера имеют свои плюсы и минусы, которые должны быть взвешены исходя из особенностей и функциональности необходимой потребителю.

Струйный принтер

Есть несколько типов струйных принтеров:

  • Обычный принтер
  • Фотопринтер
  • МФУ - Многофункциональное устройство (принтер, сканер, копир)

Если Вам нужен принтер для цветной или черно-белой распечатки документов, таких как документы Word, таблицы Excel, веб-страницы или сообщения электронной почты, то обычный принтер является подходящим вариантом для работы. Также этот тип принтера является самым дешевым.

Если Вы заинтересованы в печати фотографий высокого качества, фотопринтер будет лучшим выбором. Большинство фотопринтеров могут печатать фотографии высокого разрешения, и их будет сложно отличить от фото, напечатанных в профессиональной фото полиграфии.

Если Вам нужна возможность делать копии документов и сканировать документы и фотографии в компьютер, а также, само собой, печатать фотографии и документы, то лучший выбор это многофункциональное устройство (МФУ). Некоторые МФУ могут печатать с фотопленки, наносить рисунки на специальные DVD и CD диски, а также работать как факс.

Плюсы и минусы струйных принтеров

Плюсы струйных принтеров:

Меньший размер - большинство струйных принтеров относительно небольшие и могут поместиться в ограниченном пространстве. МФУ немного больше, но все еще, как правило, меньше, чем лазерные принтеры и намного меньше, чем обычное офисные копировальные аппараты.

Низкая стоимость - струйные принтеры, в целом, имеют более низкие цены, чем лазерные.

Дешевые струйные картриджи - картриджи для струйных принтеров в последние несколько лет стали значительно дешевле в цене. Также обычно сами чернила стоят дешевле, нежели тонер для лазерных принтеров.

Легкая замена картриджей - в струйных принтерах замена картриджей осуществляется очень легко и быстро.

Отличное качество фото - струйные принтеры для фотопечати могут показывать отличные результаты. С ним зачастую нет необходимости печатать фотографии в полиграфии.

Минусы струйных принтеров:

Менее эффективное использование чернил - струйные принтеры имеют более высокую стоимость одной страницы, когда речь заходит о печати, в связи с их довольно неэффективным применением чернил. По сравнению со струйными, лазерные принтеры с использованием тонера, гораздо более эффективные.

Медленная печать больших документов - печать документов с несколькими страницами, на струйном принтере, займет немного больше времени, чем с лазерным принтером.

Затруднительная очистка - очистка струйного принтера не легкая задача. Струйные картриджи иногда могут течь, чернила из них останутся на всем на что попадут, в том числе на руках и одежде.

В целом, струйный принтер наиболее распространенный выбор потребителей. При посещении магазинов электроники можно увидеть больший выбор струйных принтеров, нежели лазерных. Зачастую потребители нуждаются в хорошем качестве печати по низкой цене, и струйные принтеры этому соответствуют.

Лазерный принтер

Есть два типа лазерных принтеров:

  • Обычный принтер
  • МФУ (все в одном)

Если принтер Вам нужен только для распечатки документов, таких как Word, Excel, веб-страницы и другие, то обычный лазерный принтер будет хорошим выбором. Самые дешевые лазерные принтеры печатают только в черно-белом цвете. Есть цветные лазерные принтеры, их цена более высокая.

Если Вы ищете возможность делать копии, сканировать и печатать документы, то лазерное многофункциональное устройство лучший вариант. Как и обычный лазерный принтер, большинство МФУ способны только на черно-белую печать. Цветные МФУ доступны, но цена на них выше.

Плюсы и минусы лазерных принтеров

Плюсы лазерных принтеров:

Более эффективное использование тонера - лазерные принтеры являются эффективнее при использовании тонера, по сравнению с использование чернил в струйных принтерах. Стоимость печати одной страницы для лазерных принтеров обычно меньше, что означает общую низкую стоимость всего времени эксплуатации принтера.

Более высокая скорость печати - лазерные принтеры могут печатать документы довольно быстро, особенно большие документы, по сравнению со струйными принтерами.

Не сложная очистка - тонер не окрашивает, как это делают чернила, и очистка лазерного принтера не сложная задача, чего не скажешь о струйном принтере.

Минусы лазерных принтеров:

Более высокая стоимость картриджа с тонером - картриджи для лазерного принтера стоят дороже, чем струйные картриджи, иногда в два раза. Тем не менее, они будут служить гораздо дольше.

Большие размеры - в то время как лазерные принтеры уменьшались в размере на протяжении многих лет, они по-прежнему, как привило, немного громоздкие, чем струйные принтеры и не вписываются в труднодоступные места.

Высокая стоимость цвета - лазерные принтеры не являются общим выбором потребителей, которые хотят печатать фотографии или даже цветом в целом. Это намного дороже, и хотя лазерные принтеры могут качественно печатать в цвете, большинство потребителей выбирают струйные принтеры из-за более низкой цены.

В целом, лазерные принтеры идеально подходят для печати документов, а также копирования и сканирования. Когда дело доходит до долгосрочной стоимости эксплуатации, у них есть преимущество перед струйными принтерами. Для домашнего использования лазерный принтер не частый выбор, но для установки, например, в офисе, где нужно много печатать, это отличный выбор.

Итоги

При принятии решения между выбором струйного или лазерного принтера, потребитель должен взвесить все плюсы и минусы обоих типов принтеров. В конечном счете, если на первом месте будет стоять цена, то струйный принтер обычно выигрывает эту битву, но если важна долгосрочная стоимость владения, должен быть рассмотрен лазерный принтер.

Если фотопечать является приоритетной задачей, струйный принтер будет логичным выбором. В то время как использование чернил в нем не так эффективно как в лазерном, стоимость струйного принтера значительно меньше, чем его лазерного коллеги, что обычно является достаточной причиной сделать выбор в пользу струйного фотопринтера.

Когда, кроме печати, нужны функции копирования и сканирования, то нужно выбирать между МФУ. Если печать и копирование требуется черно-белое, то стоить подумать над выбором лазерного многофункционального устройства. Если же цвет имеет большое значение, струйный МФУ может быть отличным выбором.


Добавить комментарий

Некоторые из открытий или изобретений, уже давным-давно ставшие привычными, со временем обрастают разнообразными красивыми мифами и легендами.
В одном из таких повествований рассказывается о сотруднике небольшой исследовательской лаборатории, принадлежавшей крупной компьютерной фирме. После бессонной ночи, проведенной в работе над новой капризной конструкцией какой-то электронной штуковины, этот сотрудник по невнимательности положил паяльник рядом с наполненным канифолью шприцем (хочется приписать, что в нем были чернила, но это не так). Естественно, в итоге была испорчена спецодежда, но самое главное - возникла идея термоструйной печати. Белый халат с пятном отправился в химчистку, а струйная технология стараниями Canon, Hewlett-Packard, Epson, Lexmark и других компаний пришла в офисы и дома, поражая своей доступностью и красочностью.

Почему струйник?

В последние несколько лет компьютерная индустрия переживает самый настоящий чернильный бум. Струйные принтеры для многих пользователей являются наиболее доступными и универсальными печатающими устройствами. Получаемые на них изображения во многих случаях превосходят по качеству типографские оттиски, а максимальная скорость печати уже вплотную приблизилась к показателям производительности младших моделей лазерных принтеров. Сравнимая с любительскими фотографиями из мини-лабов полноцветная фотореалистичная струйная печать стала главным козырем производителей струйных принтеров в борьбе за привлечение новых покупателей.

В погоне за покупателем и на зависть конкурентам постоянно уменьшается размер капель и разрабатываются новые технологии для улучшения цветопередачи. От новых названий и логотипов голова уже идет кругом. Естественно, что у наиболее любознательных возникает вопрос: так уж уникальны все принципы и идеи, которыми гордится каждый из производителей?

В гордом одиночестве

Уже довольно давно в этом секторе рынка образовалось два лагеря. В одном единолично правит бал Epson с пьезоэлектрической технологией, а в другом собрался целый альянс приверженцев «кипящих чернил».

В основе пьезоэлектрического метода печати лежит свойство некоторых кристаллических веществ изменять свои физические размеры под действием электрического тока. Самым ярким примером служат кварцевые резонаторы, применяемые во многих электронных устройствах. Это явление было использовано для создания миниатюрного насоса, в котором изменение напряжения вызывает сжатие небольшого объема чернил в узком капиллярном канале и моментальный выброс его через сопло.

Печатающая головка пьезоэлектрического струйного принтера должна иметь высокую надежность, поскольку в силу довольно большой стоимости она практически всегда встроена в принтер и не меняется при установке нового чернильного картриджа, как это происходит в случае термической струйной печати. Такая конструкция пьезоэлектрической головки имеет определенные преимущества, но при этом существует постоянная опасность выхода принтера из строя по причине попавшего в систему подачи чернил пузырька воздуха (что может произойти при смене картриджа) или обычного простоя в течение нескольких недель . При этом сопла закупориваются, качество печати ухудшается, а для восстановления нормальных режимов требуется квалифицированное обслуживание, которое часто невозможно провести вне сервисного центра.

Не отрываясь от коллектива

Пока Epson шла своим собственным путем, периодически удивляя компьютерное сообщество очередным прорывом, остальные игроки рынка струйной печати не менее успешно применяли печатающую головку иной конструкции. Большинство из них считают свои разработки уникальными, хотя их суть до банального проста, а разница зачастую заключается лишь в названии.

Так, Canon использует термин Bubble-Jet, который вольно можно перевести как «пузырьковая печать». Остальные же не стали городить огород и согласились с более привычным словосочетанием «термоструйная печать».

Термические струйные принтеры работают подобно гейзеру: внутри камеры с ограниченным объемом чернил благодаря миниатюрному нагревательному элементу образуется пузырек пара, который мгновенно увеличивается в объеме, выталкивая каплю красителя на бумагу.

Применяя такую технологию, нетрудно получить миниатюрные печатающие элементы, расположенные с большой плотностью, что сулит разработчикам потенциальное увеличение разрешающей способности с солидным запасом на будущее. Однако у термической струйной печати есть и оборотная сторона. Из-за постоянного перепада температур постепенно происходит разрушение печатающей головки, и в результате ее приходится заменять вместе с чернильным картриджем.

Больше названий - громких и разных!

Пузырьки пузырьками, а простыми картинками уже давно никого не удивить. Вот и приходится бороться за каждый пиколитр в капле, за каждый оттенок на бумаге. Но способов, позволяющих повысить качество конечного изображения, на самом деле не так уж и много. Самый очевидный и доступный вариант заключался в увеличении количества цветов чернил. К четырем базовым цветам (черному, голубому, малиновому и желтому) многие производители добавили еще два - светло-голубой и светло-малиновый. В итоге появилась возможность воспроизводить более светлые оттенки, не уменьшая плотность наносимых на бумагу точек, что позволило сделать растровую структуру изображения на светлых участках, где она особенно хорошо различима, менее заметной. В Canon такую технологию назвали PhotoRealism, в Hewlett-Packard - PhotoREt, а в Epson - Photo Reproduction Quality.

Но прогресс, стимулируемый конкурентной борьбой, не стоит на месте. Следующий шаг на пути к идеалу был сделан путем уменьшения и динамического изменения размеров чернильной капли, а вместе с ней и конечной точки на бумаге. Управляя объемом «порции» наносимых на бумагу чернил, можно добиться более светлых оттенков, не увеличивая расстояния между точками. Это дает возможность сделать растровую структуру еще менее заметной.

Без дополнительных ухищрений и значительного изменения технологического процесса подобного эффекта могла добиться разве что Epson. Дело в том, что принцип работы пьезоэлектрической головки позволяет управлять размером капли, изменяя величину управляющего напряжения, прикладываемого к пьезоэлементу. Эта технология получила название Variable Dot Size. Ну а приверженцам пузырьковой печати пришлось серьезно поработать над изменением конструкции сопел. В каждом из них разместили несколько нагревательных элементов разной мощности.

Включая их по одному или все одновременно, можно получать капли различных размеров, как это и происходит в современных термических струйных принтерах. Canon окрестила свои разработки в этой области Drop Modulation, а HP применила уже готовое название с дополнительными индексами - PhotoREt II и PhotoREt III. Помимо возможности управления размером капли появилась и возможность последовательного нанесения нескольких капель в одну и ту же точку поверхности листа бумаги.

Но качество печати зависит не только от технического совершенства конструкции самого принтера, но и от других, не менее значимых факторов.

За линией струйного фронта

С увеличением разрешающей способности и скорости печати выяснилось, что погоня за улучшением этих характеристик сама по себе значительного выигрыша дать не сможет, если не улучшить носитель изображения, то есть бумагу. Казалось бы, что может быть проще бумаги? Но не тут-то было! Любые «хитрые» технологии будут бессильны, если в лоток принтера положить простую офисную бумагу.

Прекрасный лист формата А4, от вида и запаха которого с удовольствием начинает урчать любой лазерный принтер, оказывается совершенно неподготовленным к потокам разноцветных чернил, извергаемым на него из сотен сопел.

Поверхность обычной бумаги имеет волокнистую структуру, что обусловлено технологией ее производства. В итоге миниатюрные, строго рассчитанные по размеру капли начинают растекаться по поверхности самым непредсказуемым образом. При этом совершенно не важно, какая печать используется - термическая или пьезоэлектрическая. Одним из решений этой проблемы является использование пигментных чернил, представляющих собой взвесь дисперсных частиц в бесцветном жидком носителе, поскольку твердые частицы не могут проникнуть во внутренние слои и растечься по волокнам бумаги.

Чернила на пигментной основе позволяют получать яркие и насыщенные оттенки, однако есть у них и определенные недостатки, в частности низкая стойкость к внешним воздействиям.

Технология струйной печати такова, что наилучшего результата можно достичь только при использовании специальной бумаги. Фотографии на обычной бумаге выглядят более блеклыми и менее четкими. В отличие от обычной бумага со специальным покрытием и так называемая фотобумага имеют несколько специальных слоев. Распечатки на ней практически неотличимы от фотографий, полученных при печати с использованием химического фотопроцесса.

Простая бюджетная бумага для струйной печати, как правило, имеет плотность 90-105 г/м 2 , относительно небольшую толщину и прекрасный показатель белизны. Вследствие специальной обработки лицевой или обеих сторон такая бумага более устойчива к капризам чернил и препятствует их растеканию и проникновению вглубь листа.

Специальная фотобумага с глянцевой или матовой поверхностью обычно имеет плотность до 200 г/м 2 и представляет собой многослойное произведение современных технологий. Каждый из слоев выполняет определенные функции.

Нижний слой является основанием, обеспечивающим прочность и жесткость документа. Следующий слой играет роль оптического отражателя, придавая изображению яркость и белизну. Далее располагается основной связующий керамический или пластиковый слой, составляющий множество вертикальных каналов без длинных волокнистых образований вдоль поверхности листа и обеспечивающий необходимую плотность чернил в печатаемой точке. На абсорбент наносится последний, глянцевый или матовый защитный слой, придающий поверхности прочность и защищающий ее от внешних воздействий.

В процессе печати керамические частицы поглощают чернила, не давая им растекаться по поверхности. В результате форма точек и их ориентация остаются неизменными. Кроме того, можно не бояться случайного попадания влаги, поскольку глубокие и расположенные строго вертикально микрокапилляры сводят вероятность растекания к минимуму.

Специальная бумага для струйных принтеров стала панацеей от многих бед, но, к сожалению, довольно дорогой. Хочется, конечно, но... А потратиться стоит, чтобы хоть раз сравнить «небо» и «землю».

КомпьютерПресс 11"2001