Термоструйная и пьезоэлектрическая печать - за и против. Термическая струйная печать что это такое

Среди всех технологий создания изображения, свою популярность завоевал струйный способ печати.

Его применяют в принтерах, в том числе широкоформатных.

Преимуществом такой технологии является то, что капля краски формируется только в нужный момент, что позволяет получить высококачественные изображения.

Термическая струйная печать что это

В этой статье расскажем, термическая струйная печать что это, ее преимущества, принцип работы, и в каких случаях применяется.

Готовое изображение состоит из большого количества микроскопических точек краски различного цвета (цветная струйная термическая печать).

В момент, когда нужно нанести изображение, в микроскопической камере сопла находится краска, которую нужно каким-то образом вытолкнуть на поверхность запечатываемого материала (например, бумаги).

Термический способ печати заключается в том, что в камере находится нагревательный элемент, на который в момент печати поступает ток. Продолжительность одномоментного включения тока составляет малый период, до 2 миллионных доли секунды.

Под его действием элемент нагревается, температура краски увеличивается до 500º, увеличивается объем краски в сопле, что повышает давление в камере, из нее выталкивается нужна порция красителя. Есть информация, что в камере, в момент нагревания образуется давление больше 100 атмосфер, что достаточно много.

После этого образуется вакуум, который способствует втягиванию новой порции краски. Этот процесс повторяется по несколько тысяч раз в секунду.

Оборудование для термической струйной печати

Этот способ печати применяется в подавляющем большинстве струйных принтеров. Технология была представлена на рынок в начале 80-х годов прошлого века. Ведущими производителями являются компании Canon, HP, Lexmark.

Современное оборудование позволяет формировать капли размером до 35-40 мкм, что дает возможность получить высококачественное и детализированное изображение.

Как правило, в термических принтерах есть две печатающие головки. Одна предназначена для печатания черной краской, а другие для цветной печати (голубая, пурпурная и желтая краски).

В одной печатающей головке, в зависимости от модели, может быть до нескольких сотен сопел.

В зависимости от модели, головки могут быть неразрывно соединены с картриджами или встроенные в принтер, то есть многоразового пользования. Последний вариант дает возможность быть более уверенным в качестве печати, ведь этот элемент не успевает выработать свой ресурс. Но таким образом цена печати становится больше.

Преимущества и недостатки термической печати

Термическая струйная печать широко применяется в печатной технике, благодаря:

  • малошумность работы оборудования,
  • обеспечивает высокое качество и разрешение печати,
  • технология печати термическая струйная позволяет получить надежные печатающие головки,
  • стабильность работы принтеров на этой технологии,
  • высокая скорость печатания.

Недостатки термического печати:

Не всегда удается точно регулировать размер полученных капель,

В процессе работы могут образуются капли спутники, которые ухудшают качество полученного изображения,

Печатная головка иногда требует чистки,

Желательно выбирать специальную бумагу, который уменьшит растекания краски и коробление бумаги,

Дорогие картриджи с краской. Хотя некоторые рискуют и заказывают неоригинальные, которые немного дешевле.

Вывод

Струйная термальная печать дает возможность получить профессиональную печать по невысокой цене. Качество полученного изображения зависит от точности изготовления сопла, строения эжекционной камеры. Также, на получить изображения влияют характеристики используемого красителя (вязкость, поверхностное натяжение, способность к нагреву и испарения).

Надеемся, вам была интересна эта статья, которая дала ответ на вопрос: термическая струйная печать что это и в каких случаях применяется.

Сегодня на рынке печатных девайсов существует две основных технологии печати: пьезоэлектрическая и термоструйная.

Пьезоэлектрическая технология печати разработана на возможности пьезокристаллов деформироваться под влиянием на них электричества. Из-за использования данной технологии стало возможно осуществлять контроль за печатью, а именно: следить за размером капли, за скоростью ее выхода из дюз, а также за толщиной струи и т.д. Одно из преимуществ такой системы - это то, что можно управлять размером капли. Данная способность позволяет получать более качественные изображения.

На сегодняшний день специалистами было доказано, что надежность таких систем значительно выше, чем другие системы струйной печати.

При использовании данной технологии качество печати получается очень высоким. Даже универсальные и недорогие модели позволяют получить изображения высочайшего качества и высокого разрешения. Также самым главным плюсом ПУ с пьезосистемой является высокая цветопередача, которая позволяет изображению выглядеть ярко и насыщенно.

Технологии компании Epson - качество, проверенное временем

Печатающие головки струйных принтеров EPSON - это высококачественная разроботка, именно этим собственно и объясняется их высокая цена. Если использовать пьезоэлектрическую систему печати, тогда вам гарантирована надежная работа печатающего устройства, а печатающая головка не засыхает и не засоряется, благодаря тому, что она минимально контактирует с воздухом. Пьезоэлектрическая система печати была разработана и внедрена компанией EPSON, патент на использование данной системы имеет только компания EPSON.

Термоструйный принцип печати используется в печатающих устройствах Canon, HP, Brother. Посредство нагревания чернил происходит их поступление на бумагу. Посредством электрического тока идет пропорциональное нагревание жидких чернил, чем и обуславливается название данного метода печати - термоструйного. Повышение температуры воспроизводит нагревающийся элемент, который располагается внутри термоконструкции. При сильном повышении температуры основная часть краски испаряется, в конструкции быстро повышается давление, и из термокамеры через прецизионный дюз выходит небольшая капля краски. Этот процесс повторяется неоднократно по истечению одной секунды.

Основным недостатком термоструйного способа, является то, что при подобной технологии печати в печатающей головке принтера образуется достаточно большое количество осадков, которые со временем могут вывести ее из строя. Также эта накипь со временем сильно забивает дюзы, что приводит к потере качества и скорости печати принтера.

Также устройства, которые используют термоструйную печать, из-за постоянных температурных скачков, портятся печатающие головки, так как она банально сгорает под действием огромной температуры. Это является главным недостатком таких устройств. Период эксплуатации ПГ МФУ Epson абсолютно идентичный сроку службы самого устройства. Это стало возможным благодаря высококачественным материалам из которых разработана печатающая головка. Покупателям, которые пользуются, термоструйной печатью часто придется менять печатающую головку, так как из-за высокой температуры она зачастую будет сгорать, что в значительной мере увеличит финансовые расходы. Качество печатающей головки будет иметь также огромное значение, если пользователи используют перезапрвляемые картриджи .

Использовать струйный принтер Epson совместно с перезаправляемыми картриджами очень выгодно, так как повышается качество работы принтера и уменьшается себестоимость каждого напечатанного изображения.

Печатающая головка принтеров EPSON, имеет огромное значение не только для стабильной работы принтера. Качество ПГ позволяет увеличить качество печати и ее скорость. Также, если печатающая головка не будет контактировать с воздухом и засыхать пользователю не придется ее менять, а соответственно тратить средства зря.Устройства, которые используют термоструйный принцип работы могут сильно перегреваться, а соответственно перегреваться может и печатающая головка, которая при сильном перегреве может банально сгореть и выйти из стоя.

Как показывают многочисленные проверки и тестирования, для того, чтобы печать была как можно экономнее и при этом была яркой и эффектной инженеры рекомендуют использовать печатающие устройства EPSON с СНПЧ. Устройства EPSON работают с системой НПЧ гораздо дольше и эффективней, чем другие ПУ аналогичной цены от других компаний-производителей.

Компания Epson - надежный производитель качественной продукции, которая облегчит работу и сделает ее намного продуктивней.

До какого-то периода слово «печать» ассоциировалось либо с работой типографии, либо с лазерными завсегдатаями больших офисов. Струйная печать отличалась тем, что представляла собой процесс перенесения картинки или текста за счет пластины дюз и жидкого красителя.

Казалось бы, понятие струйной печати стало входить в обиход только недавно, после того, как струйные принтеры стали доступны обычному пользователю. Однако, история их развития охватывает почти 200 лет.

Рисунок ниже иллюстрирует эволюцию струйной печати от самого ее зарождения до современности.

Этапы развития струйной печати

Теоретические разработки

Теоретические основы струйной технологии печати истоками уходят в 1833 год. Именно тогда Феликс Савар, французский физик и изобретатель, выявил интересную закономерность: в результате распыления жидкости через отверстия с микроскопическим диаметром (дюзы) формируются идеально ровные капли. И лишь через 45 лет, в 1878 году, этот феномен математически описал лорд Рейли, лауреат Нобелевской премии.

Однако ранее, в 1867 году, Уильям Томпсон запатентовал идею непрерывной подачи чернил (Continuous Ink Jet). Он использовал электростатические силы, чтобы контролировать распыление чернил и жидкого красителя на бумажный носитель. На основе этого принципа Уильям Томпсон сконструировал самопишущие приборы, необходимые для работы электрических телеграфов.

Непрерывная печать

Знаменательным для струйной технологии печати стал 1951 год — компания Siemens получила патент на струйный принтер, первый в своем роде. В его основе лежала технология непрерывной подачи чернил. Чуть позже многие мировые производители печатающей техники переняли эту технологию и продолжили ее совершенствование.

Предшественники современных струйных печатающих устройств были довольно громоздкими, оснащёнными различными баллонами, насосами и прочими подвижными частями, прихотливыми в использовании и, к тому же, стоили больших денег. Работали такие принтеры очень медленно, да и не без недостатков: они могли пропускать чернила при печати, что было не очень-то удобно и безопасно.

Печать по требованию

Процесс зародился в 60-х годах этого столетия, когда профессору из Стенфордского университета удалось получить одинаковые по объему и удалённые друг от друга на равном расстоянии чернильные капли. Для этого он использовал волны давления, производимые вследствие движения пьезокерамического элемента. Такая система называлась «Drop-on-demand», в переводе с английского «капли по требованию». Технология позволила отойти от использования сложной системы рециркуляции чернил, системы зарядки, а также исключить отклонения капель.

Впервые печать по требованию применили в 1977 году в печатающих устройствах PТ-80 компании Siemens, а спустя некоторое время (1978 год) в принтере Silonics. Позже данный способ печати продолжил свою эволюцию: технология развивалась и становилась основой все новых и новых моделей струйных принтеров для коммерческого использования.

Наиболее дорогостоящей деталью в принтере была, да и сейчас остается, печатающая головка. Её невозможно было «безболезненно» заменить, как это происходило с картриджем. Поэтому пользователи находили новые алгоритмы взаимодействия. Например, чтобы предотвратить засорение дюз печатающей головки пузырьками воздуха или остатками засохшей краски, принтер старались использовать даже когда в этом не было особой необходимости. И все для того, чтобы не допустить длительного простоя печатающего устройства.

Еще в 70-е годы ХХ века появились предпосылки цветной печати. Шведский профессор Херц нашел способ воспроизводить всевозможные оттенки серого благодаря методу регулирования плотности нанесения капель. Это позволило печатать не только текст, но и различные изображения, передавая градации серого цвета.

Пузырьковая печать

Технологией пузырьковой печати мы обязаны компании Canon. В конце 70-х годов ее специалисты явили миру технологию струйной печати, неизвестную ранее — «Bubble Jet» или «пузырьковую печать». Принцип работы этих струйных принтеров заключается в следующем: в дюзе размещен микроскопический термоэлемент, который мгновенно нагревается до 500оС как только на него воздействует ток. При нагреве чернила закипают, внутри камеры образуются воздушные пузырьки (bubbles), под действием которых из дюзы на бумагу выталкиваются равные объёмы чернил. Как только чернила перестают нагреваться и охлаждаются до прежней температуры, пузырьки лопаются, а в дюзу втягивается следующая порция чернил. Таким образом обеспечивается беспрерывная печать.

Принцип пузырьково-струйной технологии печати

Как только в 1981 году компания Canon представила пузырьково-струйную технологию на выставке Grand Fair, та сразу заинтересовала общественность. И уже в 1985 году свет увидел Canon BJ-80, первый монохромный пузырьковый принтер. Спустя 3 года появился Canon BJC-440, первый широкоформатный принтер, использующий ту же технологию. Он уже мог печатать в цвете с разрешением 400 dpi.

Расходы на печать с технологией пузырьково-струйной печати относительно невысоки. Однако стоимость обслуживания принтера возрастает оттого, что печатающая головка встроена в чернильные картриджи, а не в принтер. Но есть и обратная сторона медали: сохраняется работоспособность устройства в случае использования неоригинального картриджа.

Термическая печать

Эпоха термической печати началась к концу 90-х годов, хотя компании HP и Canon приступили к ее разработке еще в 1984 году. Все дело в том, что не удавалось добиться необходимого сочетания качества и стоимости печати, а также скорости работы. Чуть позже к гигантам индустрии присоединилась и компания Lexmark. В этом тандеме эти крупнейшие компании добились высокого разрешения печати и создали подобие современных принтеров.

Полученная в результате разработок технология стала именоваться «термической печатью» (thermal inkjet). Эту технологию использовала первая линейка струйных принтеров HP — ThinkJet.

Струйные принтеры HP THinkJet

Принцип термической печати заключается в увеличении объёма чернил при нагреве. Температура нагревательного элемента внутри печатающей головки повышалась под воздействием нагревательного элемента. Чернила, расположенные близко к нагревательному элементу, при нагреве начинают испаряться. Формируются пузырьки, которые выталкивают из дюзы определенное их количество. В результате понижения давления в печатающую головку поступает такой же объем чернил. Этот процесс повторяется с высокой цикличностью до 12 тысяч перезаправок в секунду. Печатающая головка на основе термоструйной технологии состоит из большого количества микроскопических дюз и эжекционных камер.

Компания HP выбрала непривычный курс — она изготовила сменную печатающую головку, которая является частью картриджа и выбрасывается без особых сожалений вместе с ним. Такой шаг решил проблему долговечности принтера.

Принцип работы термического принтера

Пузырьковые и термоструйные принтеры обладали приемлемой ценой, компактностью, работали бесшумно и обеспечивали широкий цветовой диапазон, благодаря чему заполонили рынок доступных печатающих устройств и практически вытеснили с рынка матричные принтеры.

Пьезоэлектрическая печать

Технология пьезоэлектрической системы печати (Piezoelectric Ink Jet) появилась в 1993 году благодаря компании Epson, которая первая стала применять ее в своих принтерах. Принцип пьезоэлектрической печати основан на свойстве пьезокристаллов изменять свой объём и форму под воздействием силы тока. В строении картриджа одной из стенок выступает пьезоэлектрическая пластина. Она выгибается под влиянием тока и тем самым уменьшает объём чернильной камеры. В результате определенный объем чернил выталкивается из дюзы наружу.

Принцип пьезоэлектрической технологии печати

Плюс стационарной печатающей головки в ее экономичности, ведь ее не приходится менять так же часто, как и картриджи. Однако есть небольшая вероятность, что при смене картриджа в печатающую головку может попасть воздух и закупорить дюзы, повлияв на качество печати.

Современные традиции

Развитие технологий в настоящее время сделала струйные принтеры еще популярней. Их приобретают и для офисного и для домашнего использования благодаря их доступной цене и компактности. Иногда пользователи покупают струйные принтеры для цветной печати как дополнение монохромным лазерным принтерам. Существует мнение, что лазерные устройства быстрее и дешевле справляются с печатью текстовых документов, а струйные — с цветными фотографиями.

В настоящее время стандартом разрешения печати современных струйных принтеров считается 4600х1200 dpi. Но уже существуют и такие устройства, что превосходят этот показатель. Из других способностей струйных принтеров можно отметить печать без полей, а так же встроенный ЖК-дисплей или порт для чтения карт памяти.

Преимущества струйных принтеров.

Самый основной козырь струйных печатающих устройств — это высокое качество цветной печати. Вы можете воссоздавать яркие и реалистичные фотографии с отличной прорисовкой мелких деталей и полутонов. Кроме этого, струйные принтеры практически бесшумны, не требуют длительного времени на разогрев, представлены в широком модельном ряде и доступны в разных модификациях.

Недостатки струйных принтеров.

Главная причина отказа от использования струйника — дороговизна оригинальных картриджей, недолговечность отпечатков из-за выцветания или растекания чернил при попадании жидкости, а также засорение печатающих головок. Хотя решения всех этих недостатков очень просты. Засорения можно побороть стандартной прочисткой головки, а отпечатки сделать более долговечными, используя пигментные чернила. А вот избежать переплаты за оригинальные картриджи помогут альтернативные расходные материалы и чернила, которые на данный момент достигли высоких показателей качества. Отличие от оригинальных чернил составляет не более 2-5%, благодаря чему разница результатов печати неразличима невооруженным глазом.

Много новостей из развития современных принтеров, МФУ и плоттеров можно почитать .

Какая технология печати лучше? Термическая струйная или пьезоэлектрическая струйная? И чем?

  1. На рынке струйных печатающих устройств распространены две основные технологии печати: пьезоэлектрическая и термоструйная.

    Отличия данных систем состоят в способе вывода капли чернил на бумагу.

    Пьезоэлектрическая технология была основана на способности пьезокристаллов к деформации под воздействием на них электрического тока. Благодаря использованию данной технологии осуществляется полный контроль печати: определяется размер капли, толщина струи, скорость выброса капли на бумагу и т. д. Одним из множества преимуществ данной системы является возможность управления размером капли, что позволяет получать отпечатки высокого разрешения.

    Доказано, что надежность пьезоэлектрической системы значительно выше в сравнении с другими системами струйной печати.

    Качество печати при использовании пьезоэлектрической технологии чрезвычайно высокое: даже универсальные недорогостоящие модели позволяют получить отпечатки практически с фотографическим качеством и высоким разрешением. Также достоинством печатающих устройств с пьезоэлектрической системой считается естественность цветопередачи, что становится действительно важно при печати фотографий.

    Печатающие головки струйных принтеров EPSON обладают высоким уровнем качества, чем и объясняется их высокая стоимость. При пьезоэлектрической системе печати обеспечивается надежная работа печатающего устройства, а печатающая головка крайне редко выходит из строя и устанавливается на принтер, а не является частью сменных картриджей.

    Пьезоэлектрическая система печати была разработана компанией EPSON, она запатентована и ее использование запрещено другим производителям. Поэтому единственные принтеры, которые используют данную систему печати, - это EPSON.

    Термоструйная технология печати используется в принтерах Canon, HP, Brother. Подача чернил на бумагу осуществляется посредством их нагревания. Температура нагрева может составлять до 600С. Качество термоструйной печати на порядок ниже пьезоэлектрической, всвязи с невозможностью проконтролировать процесс печати из-за взрывного характера капли. В результате такой печати часто возникают сателлиты (капли-спутники), которые мешают получить высокое качество и четкость отпечатков, приводя к искажению. Этого недостатка невозможно избежать, так как он заложен в самой технологии.

    Еще одним недостатком термоструйного способа является образование накипи в печатающей головке принтера, так как чернила являются ничем иным как совокупностью химических веществ, растворенных в воде. Образовующаяся накипь со временем забивает дюзы и существенно портит качество печати: принтер начинает полосить, ухудшается цветопередача и т. д.

    Из-за постоянных перепадов температуры в устройствах, использующих термоструйную технологию печати, постепенно разрушается печатающая головка (сгорает под действием высокой температуры при перегреве термоэлементов). Это является главным недостатком таких устройств.
    Срок службы печатающей головки принтеров EPSON такой же, как и самого устройства, благодаря высокому качеству изготовления ПГ. Пользователям же устройств с термоструйной печатью придется каждый раз покупать новую печатающую головку и производить замену, что не только уменьшает долговечность принтера, но и существенно увеличивает затраты на печать.
    Качество печатающей головки имеет значение и при использовании неоригинальных расходных материалов, в частности СНПЧ.

    Использование СНПЧ Epson позволяет пользователю на 50% увеличить объемы печати.
    Печатающая головка принтеров EPSON, как уже не раз упоминалось в данной статье, имеет высокое качество, засчет чего увеличение объемов печати не сказывается негативным образом на работе принтера, а наоборот позволяет пользователю получить максимум экономии без ухудшения качества печати.

  2. Почитай об этих технологиях в инете и сравни, что для тебя лучше. Например, эта таблица: http://www.profiline-company.ru/about/info/struy/piezo/
    У эпсонов печатающая головка отдельная, меняются только картриджи с краской. Это дешевле, да и СНПЧ поставить можно (будет очень дешвая печать) , но если краска в головке засохнет - то проще купить новый принтер. В термической печатающей головке краска и головки в одном флаконе. Если засохнет - достаточно купить новый картридж (хотя, у дорогих моделей также идут разделнные головки и картриджи) .
    Раньше, пьезоэлектрическая технология мне больше нравилась: краска сильнее "впечатывалась" в бумагу, из-за чего меньше смазывалась. Сейчас - не знаю.
  3. пьезопечать лучше. Ее использует и Brother. Ее преймущество только в том, что при отсутсвии краски в соплах, сопла не сгорят. Это конкретно может произойти, если не наблюдать за печатью - к примеру, голова у ХП при этом сильно замедляется - и печатать с отключенной проверкой остаточной краски - ее отключать на неоригиналах и СНПЧ просто необходимо.

    То есть, если не будешь смотреть за принтером при печати, то лучше брать пьезо.
    С другой стороны, это может произойти только при неправильном монтаже, после смены патронов при первых распечатках, или же если перестать проверять уровен чернил самостоятельно.
    Да и стоимость головы терпима (а она - также расходник) , в пределах двух тысяч. С запчастями для лазерного это вообще не сравнимо.

Струйные принтеры сегодня одни из наиболее популярных среди потребителей. Причем в большинстве случаев такой принтер покупается в качестве периферии к домашнему компьютеру. На то есть свои резоны, и в первую очередь низкая цена и возможность печати цветных документов. Между тем, как утверждают продавцы ряда салонов компьютерной техники, большинство пользователей имеет более чем смутное представление о принципах струйной печати. Если с работой матричных или лазерных принтеров их владельцам все более-менее ясно, то про струйные принтеры они, как правило, только и могут сказать, что картинка там формируется путем разбрызгивания по бумаге мелких капель чернил.

Для начала, наверное, стоит объяснить, что представляет собой такой показатель, как dpi, который, оказывается, более важен, чем, к примеру, скорость печати. DPI (dot per inch, то есть точек дюйм) - это так называемое число капель на дюйм, функция от частоты, с которой выбрасываются капли, и скорости, с которой печатающая головка принтера перемещается по горизонтальной оси. Управляемое сопло в определенные моменты дискретно выбрасывает капли чернил и таким образом проводит линию. Главная трудность для производителя принтеров состоит в сочетании качества (максимум выбросов капель на строку) и скорости (минимум выбросов капель на строку для достижения более высокой скорости). Скорость выброса капель составляет от 10 до 20 тыс. в секунду. Изменяя эту частоту или скорость перемещения каретки печатающей головки, можно достичь оптимальной плотности горизонтального размещения капель, а значит, и качества печати.

Разрешение - это параметр, определяемый размером чернильных капель. При нанесении более мелких капель четкость изображения будет выше, если сравнивать с равной по площади поверхностью, заполненной меньшим количеством более крупных капель. Понятно, что в таком случае более высокое качество потребует меньшей скорости печати, и наоборот.

Струйные принтеры различаются по способу печати.

Достаточно широко распространены три основных способа печати.

Термоструйная печать

Разработка термической технологии струйной печати началась еще в 1984 году. Первопроходцами тогда стали компании HP и Canon. Но дело шло медленно, и придти к необходимым результатам долгое время не удавалось. Только в 90-х годах удалось наконец добиться приемлемого уровня качества, скорости работы и стоимости. Позже к HP и Canon с целью дальнейшей работы над термическими принтерами присоединилась компания Lexmark, что и привело к созданию сегодняшних принтеров с высоким разрешением.

Как видно из названия, в основе термического (правильнее сказать, электротермического) формирования струи лежит увеличение температуры жидких чернил под действием электрического тока. Это повышение температуры обеспечивается нагревательным элементом, который находится в эжекционной камере. При нагревании некоторая часть чернил испаряется, в камере быстро нарастает избыточное давление, и из эжекционной камеры через прецизионное сопло выбрасывается маленькая капелька чернил. В течение одной секунды этот процесс многократно повторяется. Самое главное для успеха данной технологии. это максимально точно подобрать конфигурацию эжекционной камеры, а также диаметр и точность сопла. На поведение чернил при нагревании и выбросе их из сопла наряду с характеристиками самих чернил (их вязкостью, поверхностным натяжением, способностью к испарению и др.) оказывают влияние также характеристики канала, ведущего к соплу, и точки выхода в сопло. Большое значение для обеспечения правильного выброса чернил из сопла имеют также характер изменения чернильного мениска в сопле после эжекции и повторное заполнение эжекционной камеры. Рассмотрим поподробнее этапы формирования и выброса капли. Формирование термической чернильной струи начинается в печатающей головке картриджа. Электрический импульс порождает на нагревательных элементах тепловой поток, эквивалентный более чем двум млрд ватт на квадратный метр. Это примерно в 10 раз больше, чем поток на поверхности Солнца. Однако, поскольку длительность теплового импульса составляет всего 2 миллионных доли секунды, то, хотя температура в это время увеличивается со скоростью 300 млн градусов в секунду, поверхность нагревательного элемента успевает за это время нагреться лишь примерно до 600°C. Поскольку нагревание идет чрезвычайно быстро, в реальности температура, при которой чернила уже не могут существовать в виде жидкости, достигается лишь в слое толщиной менее одной миллионной доли миллиметра. При такой температуре (примерно 330°C) тонкий слой чернил начинает испаряться, и происходит выталкивание пузырька из сопла. Пузырек пара образуется при очень высокой температуре, и поэтому давление пара в нем составляет порядка 125 атмосфер, т.е. в четыре раза больше давления, создаваемого в современных бензиновых двигателях внутреннего сгорания. Такой пузырек, обладающий громадной энергией, действует как поршень, выбрасывающий чернила из сопла на страницу со скоростью 500 дюймов в секунду. Образующаяся при этом капля весит всего 18 миллиардных долей грамма. По командам, поступающим от драйвера принтера, несколько сотен сопел могут активизироваться одновременно в любых сочетаниях. Резервуары, из которых чернила подаются в печатающую головку, можно условно разделить на два конструктивных типа. Во-первых, широко используется моноблочная система, объединяющая встроенный чернильный резервуар и эжекционный блок. Она обладает тем преимуществом, что при каждой смене чернильного резервуара заменяется и печатающая головка, что способствует поддержанию высокого качества печати. Кроме того, она проще по конструкции, и в ней легче выполняются замены. Во второй, конструктивно более сложной системе печатающая головка отделена от резервуара для чернил, и здесь заменяется только этот резервуар при его опорожнении. Пена в резервуаре для чернил играет роль губки, впитывающей жидкие чернила, так что чернила непрерывно подаются к печатающей головке, и при этом нет ни нежелательной утечки из картриджа под действием силы тяжести, ни истечения чернил из самой печатающей головки. На основании моноблочного картриджа находятся электрические контакты и печатающая головка. ключевой элемент всего процесса струйной печати; чернила подаются к печатающей головке через совокупность каналов, идущих от резервуара. Изготовление печатающей головки. это сложный процесс, осуществляемый на микроскопическом уровне, где точность измерений определяется микронами. Основные материалы, используемые для изготовления эжекционной камеры, канала для подачи чернил, электронной управляющей схемы и нагревательных элементов, подобны материалам, используемым в полупроводниковой промышленности, где тончайшие проводящие металлические и изолирующие слои проходят прецизионную лазерную обработку. Такая технология требует больших инвестиций и в разработку, и в производство, и это одна из главных причин того, что в данной сфере решаются действовать очень немногие компании. Печатающая головка представляет собой совокупность множества микро комплектов, состоящих из эжекционных камер и связанных с ними сопел, расположенных в шахматном порядке с целью увеличения вертикальной плотности сопел. При таком расположении сопел их число на расстоянии примерно 1,27 см может достигать 208, как это имеет место, например, в черных картриджах моделей Lexmark Z, так что удается достичь разрешения в 1,44 млн точек. Качество печати определяется многими факторами, но главные из них. это размер точки, вертикальная плотность точек и частота выброса капель через сопло; именно эти показатели являются основными критериями для дальнейшей работы над печатающими головками, будь то головки термического или пьезоэлектрического типа. Термические головки имеют некоторые преимущества по сравнению с электромеханическими, поскольку ключевая технология их изготовления подобна той, которая применяется при изготовлении микропроцессорных чипов и других изделий полупроводниковой электроники. Стремительный прогресс в этих областях идет на пользу термической технологии, и можно ожидать, что в ближайшие годы будут достигнуты еще более высокие разрешения и более высокая скорость печати. Термическая струйная печать имеет несколько преимуществ по сравнению с конкурирующей с ней пьезотехнологией. Например, простота конструкции и тесная аналогия с производством полупроводников: это означает, что предельная себестоимость в производстве здесь будет ниже, чем для конкурирующей технологии. Конфигурация эжекционных камер позволяет располагать сопла ближе друг к другу, что дает возможность достигать более высокого разрешения.

Пьезоэлектрическая технология

Пьезоэлектрическая система, созданная на базе электромеханического устройства и доведенная до коммерческой готовности компанией Epson, впервые была использована в струйных принтерах Epson не так давно. в 1993 году. В основе пьезотехнологии лежит свойство некоторых кристаллов, называемых пьезокристаллами (примером могут служить кристаллы кварца в распространенных кварцевых наручных часах), деформироваться под действием электрического тока; таким образом, этот термин определяет электромеханическое явление. Это физическое свойство позволяет использовать некоторые материалы для создания миниатюрного "чернильного насоса", в котором смена положительного напряжения на отрицательное будет вызывать сжатие небольшого объема чернил и энергичный выброс его через открытое сопло. Как и при формировании чернильной струи за счет термических эффектов, размер капли здесь определяется физическими характеристиками эжекционной камеры и давлением, создаваемым в этой камере за счет деформации пьезокристалла. Изменение размера капли осуществляется путем изменения величины тока, протекающего через эжекционный механизм. Как и в термопринтерах, частота выброса под действием пьезоэффекта зависит от потенциальной частоты электрических импульсов, которая, в свою очередь, определяется временем возвращения камеры в "спокойное" состояние, когда она заполнена чернилами и готова к следующему рабочему циклу. Пьезотехнология отличается высокой надежностью, что очень важно, потому что печатающая головка по чисто экономическим причинам не может быть частью сменного картриджа с чернилами, как в термических системах, а обязательно должна быть жестко соединена с принтером. Как у термических, так и у пьезоэлектрических систем качество работы определяется многими факторами. Возможность изменения размера точки дает пьезотехнологии определенные преимущества. С другой стороны, пьезотехнология сталкивается с некоторыми чисто физическими ограничениями. Например, большие размеры электромеханической эжекционной камеры означают, что плотность размещения сопел по вертикали должна быть меньше, чем у термических аналогов. Это не только ограничивает перспективы дальнейшей разработки, но означает также, что для получения более высокого разрешения и однородности при высококачественной печати требуется несколько проходов печатающей головки по одной и той же странице.

Стационарная печатающая головка в определенной мере экономически выгодна, потому что ее не приходится менять. Однако это преимущество частично обесценивается тем, что существует опасность проникновения воздуха в систему при смене картриджа. При этом сопла закупориваются, качество печати ухудшается, и для восстановления нормальной работоспособности системы требуется провести несколько циклов очистки. Еще одно существующее пока ограничение для пьезосистем касается использования чернил на основе красителей: при использовании цветных (пигментных) чернил, которые имеют более высокое качество, но при этом обладают и более высокой плотностью, также возникает опасность закупорки сопел. Пьезоэлектрическая печатающая головка, сконструированная на основе ранее существовавшей технологии, отличается более низкими расходами на разработку, но зато она заметно дороже в изготовлении. В настоящее время такие преимущества пьезоэлектрических головок, как высокая надежность и возможность изменения размеров капли, весьма существенны и позволяют изготовлять продукцию очень высокого качества. Однако, поскольку цены на термические струйные принтеры непрерывно снижаются, и они все больше захватывают рынок принтеров начального уровня, то для пьезосистем остается рынок продукции среднего и высшего класса.

Пузырьково-струйная печать

Принцип пузырьково-струйной печати Canon Bubble-Jet, изобретённый в конце 70-х, до гениального прост. В каждой дюзе, тончайшем канале, в котором формируются капельки чернил, расположен микроскопический нагреватель. Электрические импульсы, подаваемые на него, заставляют чернила вскипать с образованием воздушных пузырьков, и эти пузырьки с каждым импульсом выталкивают равные объёмы чернил из дюзы. Нагрев прекращается, пузырёк исчезает, в дюзу втягивается новая порция чернил, и она готова к новому циклу!

Однако, понадобилось около 8 лет, чтобы первый пузырьково-струйный принтер стал доступен пользователям. В 1981 году перспективная технология Canon Bubble-Jet впервые была представлена на выставке Canon Grand Fair и сразу приковала к себе внимание специалистов. Но лишь в 1985-ом появилась первая коммерческая модель монохромного принтера Canon BJ-80, а первый полноцветный BJ-принтер BJC-440 (формата A2, с разрешением 400 точек на дюйм) появился в 1988 году.