"сверхтяжелая" нейтронная звезда отрицает теорию "свободных" кварков. Астрофизики уточнили предельную массу нейтронных звезд

МОСКВА, 28 авг - РИА Новости. Ученые обнаружили рекордно тяжелую нейтронную звезду, масса которой в два раза превышает массу Солнца, что заставит их пересмотреть ряд теорий, в частности, теории, согласно которой внутри сверхплотного вещества нейтронных звезд могут присутствовать "свободные" кварки, говорится в статье, опубликованной в четверг в журнале Nature .

Нейтронная звезда представляет собой "труп" звезды, оставшийся после вспышки сверхновой. Ее размер не превышает размеров небольшого города, однако вещество по плотности в 10-15 раз выше плотности атомного ядра - "щепотка" вещества нейтронной звезды весит более 500 миллионов тонн.

Гравитация "вдавливает" электроны в протоны, превращая их в нейтроны, почему нейтронные звезды и получили такое название. До последнего времени ученые полагали, что масса нейтронной звезды не может превысить две солнечных, поскольку иначе гравитация "схлопнет" звезду в черную дыру. Состояние недр нейтронных звезд во многом является загадкой. Например, обсуждается присутствие "свободных" кварков и таких элементарных частиц, как K-мезоны и гипероны в центральных областях нейтронной звезды.

Авторы исследования, группа американских ученых во главе с Полом Деморестом (Paul Demorest) из Национальной радиообсерватории, изучали двойную звезду J1614-2230 в трех тысячах световых лет от Земли, один из компонентов которой является нейтронной звездой, а второй белым карликом.

При этом нейтронная звезда представляет собой пульсар, то есть звезду, испускающую узконаправленные потоки радиоизлучения, в результате вращения звезды поток излучения можно уловить с поверхности Земли с помощью радиотелескопов через разные промежутки времени.

Белый карлик и нейтронная звезда вращаются друг относительно друга. Однако на скорость прохождения радиосигнала от центра нейтронной звезды влияет гравитация белого карлика, она "тормозит" его. Ученые, измеряя на Земле время прихода радиосигналов, могут с высокой точностью установить массу объекта, "ответственного" за задержку сигнала.

"Нам очень повезло с этой системой. Быстровращающийся пульсар дает нам сигнал, приходящий с орбиты, которая прекрасно расположена. Более того, наш белый карлик довольно крупный для звезд подобного типа. Эта уникальная комбинация позволяет использовать эффект Шапиро (гравитационную задержку сигнала) в полной мере и упрощает измерения", - говорит один из авторов статьи Скотт Ренсом (Scott Ransom).

Двойная система J1614-2230 расположена таким образом, что наблюдать ее можно почти "с ребра", то есть в плоскости орбиты. Это облегчает точное измерение масс, входящих в нее звезд.

В результате масса пульсара оказалась равна 1,97 солнечной массы, что стало рекордом для нейтронных звезд.

"Эти измерения массы говорят нам, что если кварки вообще есть в ядре нейтронной звезды, они не могут быть "свободными", а, скорее всего, должны взаимодействовать друг с другом гораздо сильнее, чем в "обычных" атомных ядрах", - поясняет руководитель группы астрофизиков, занимающихся этим вопросом, Ферьял Озел (Feryal Ozel) из университета штата Аризона.

"Меня удивляет, что такой простой факт, как масса нейтронной звезды, может сказать так много в различных областях физики и астрономии", - говорит Ренсом.

Астрофизик Сергей Попов из Государственного астрономического института имени Штернберга отмечает, что изучение нейтронных звезд может дать важнейшую информацию о строении материи.

"В земных лабораториях нельзя изучать вещество при плотности намного больше ядерной. А это очень важно для понимания того, как устроен мир. К счастью, такое плотное вещество есть в недрах нейтронных звезд. Для определения свойств этого вещества очень важно узнать, какую предельную массу может иметь нейтронная звезда и не превратиться в черную дыру", - сказал Попов РИА Новости.

Нейтронная звезда

Расчеты показывают, что при взрыве сверхновой с M ~ 25M остается плотное нейтронное ядро (нейтронная звезда) с массой ~ 1.6M . В звездах с остаточной массой M > 1.4M , не достигших стадии сверхновой, давление вырожденного электронного газа также не в состоянии уравновесить гравитационные силы и звезда сжимается до состояния ядерной плотности. Механизм этого гравитационного коллапса тот же, что и при взрыве сверхновой. Давление и температура внутри звезды достигают таких значений, при которых электроны и протоны как бы “вдавливаются” друг в друга и в результате реакции

после выброса нейтрино образуются нейтроны, занимающие гораздо меньший фазовый объем, чем электроны. Возникает так называемая нейтронная звезда, плотность которой достигает 10 14 - 10 15 г/см 3 . Характерный размер нейтронной звезды 10 - 15 км. В некотором смысле нейтронная звезда представляет собой гигантское атомное ядро. Дальнейшему гравитационному сжатию препятствует давление ядерной материи, возникающее за счет взаимодействия нейтронов. Это также давление вырождения, как ранее в случае белого карлика, но - давление вырождения существенно более плотного нейтронного газа. Это давление в состоянии удерживать массы вплоть до 3.2M .
Нейтрино, образующиеся в момент коллапса, довольно быстро охлаждают нейтронную звезду. Согласно теоретическим оценкам температура ее падает с 10 11 до 10 9 K за время ~ 100 с. Дальше темп остывания несколько уменьшается. Однако он достаточно высок по астрономическим масштабам. Уменьшение температуры с 10 9 до 10 8 K происходит за 100 лет и до 10 6 K - за миллион лет. Обнаружить нейтронные звезды оптическими методами довольно сложно из-за малого размера и низкой температуры.
В 1967 г. в Кембриджском университете Хьюиш и Белл открыли космические источники периодического электромагнит-ного излучения - пульсары. Периоды повторения импульсов боль-шинства пульсаров лежат в интервале от 3.3·10 -2 до 4.3 с. Согласно современным представлениям, пульсары - это вращающиеся нейтронные звезды, имеющие массу 1 - 3M и диаметр 10 - 20 км. Только компактные объекты, имеющие свойства нейтронных звезд, могут сохранять свою форму, не разрушаясь при таких скоростях вращения. Сохранение углового момента и магнитного поля при образовании нейтронной звезды приводит к рождению быстро вращающихся пульсаров с сильным магнитным полем B ~ 10 12 Гс.
Считается, что нейтронная звезда имеет магнитное поле, ось которого не совпадает с осью вращения звезды. В этом случае излучение звезды (радиоволны и видимый свет) скользит по Земле как лучи маяка. Когда луч пересекает Землю регистрируется импульс. Само излучение нейтронной звезды возникает за счет того, что заряженные частицы с поверхности звезды двигаются вовне по силовым линиям магнитного поля, испуская электромагнитные волны. Этот механизма радиоизлучения пульсара, впервые предложенный Голдом, показан на рис. 39.

Если пучок излучения попадает на земного наблюдателя, то радиотелескоп фиксирует короткие импульсы радиоизлучения с периодом, равным периоду вращения нейтронной звезды. Форма импульса может быть очень сложной, что обусловлено геометрией магнитосферы нейтронной звезды и является характерной для каждого пульсара. Периоды вращения пульсаров строго постоянны и точности измерения этих периодов доходят до 14-значной цифры.
В настоящее время обнаружены пульсары, входящие в двойные системы. Если пульсар вращается по орбите вокруг второго компонента, то должны наблюдаться вариации периода пульсара вследствие эффекта Допплера. Когда пульсар приближается к наблюдателю, регистрируемый период радиоимпульсов из-за допплеровского эффекта уменьшается, а когда пульсар удаляется от нас, его период увеличивается. На основе этого явления и были обнаружены пульсары, входящие в состав двойных звезд. Для впервые обнаруженного пульсара PSR 1913 + 16, входящего в состав двойной системы, орбитальный период обращения составил 7 часов 45 мин. Собственный период обращения пульсара PSR 1913 + 16 равен 59 мс.
Излучение пульсара должно приводить к уменьшению скорости вращения нейтронной звезды. Такой эффект также был обнару-жен. Нейтронная звезда, входящая в состав двойной системы, может быть и источником интенсивного рентгеновского излучения.
Структура нейтронной звезды массой 1.4M и радиусом 16 км показана на рис. 40.

I - тонкий внешний слой из плотно упакованных атомов. В областях II и III ядра расположены в виде объемно-центрированной кубической решетки. Область IV состоит в основном из нейтронов. В области V вещество может состоять из пионов и гиперонов, образуя адронную сердцевину нейтронной звезды. Отдельные детали строения нейтронной звезды в настоящее время уточняются.
Образование нейтронных звезд не всегда является следствием вспышки сверхновой. Возможен и другой механизм образования нейтронных звезд в ходе эволюции белых карликов в тесных двойных звездных системах. Перетекание вещества звезды-компаньона на белый карлик постепенно увеличивает массу белого карлика и по достижении критической массы (предела Чандрасекара) белый карлик превращается в нейтронную звезду. В случае, когда перетекание вещества продолжается и после образования нейтронной звезды, её масса может существенно увеличиться и в результате гравитационного коллапса она может превратиться в черную дыру. Это соответствует так называемому “тихому” коллапсу.
Компактные двойные звезды могут проявляться и как источники рентгеновского излучения. Оно также возникает за счет аккреции вещества, падающего с “нормальной” звезды на более компактную. При аккреции вещества на нейтронную звезду с B > 10 10 Гс вещество падает в район магнитных полюсов. Рентгеновское излучение модулируется её вращением вокруг оси. Такие источники называют рентгеновскими пульсарами.
Существуют рентгеновские источники (называемые барстерами), в которых периодически с интервалом от нескольких часов до суток происходят всплески излучения. Характерное время нарастания всплеска - 1 сек. Длительность всплеска от 3 до 10 сек. Интенсивность в момент всплеска может на 2 - 3 порядка превосходить светимость в спокойном состоянии. В настоящее время известно несколько сотен таких источников. Считается, что всплески излучения происходят в результате термоядерных взрывов вещества, накопившегося на поверхности нейтронной звезды в результате аккреции.
Хорошо известно, что на малых расстояниях между нуклонами (< 0.3·10 -13 см) ядерные силы притяжения сменяются силами оттал-кивания, т. е. противодействие ядерного вещества на малых расстояниях сжимающей силе тяготения увеличивается. Если плотность вещества в центре нейтронной звезды превышает ядерную плотность ρ яд и достигает 10 15 г/см 3 , то в центре звезды наряду с нуклонами и электронами образуются также мезоны, гипероны и другие более массивные частицы. Исследования поведения вещества при плотностях, превышающих ядерную плотность, в настоящее время находятся в начальной стадии и имеется много нерешенных проблем. Расчеты показывают, что при плотностях вещества ρ > ρ яд возможны такие процессы, как появление пионного конденсата, переход нейтронизованного вещества в твердое кристаллическое состояние, образование гиперонной и кварк-глюонной плазмы. Возможно образование сверхтекучего и сверхпроводящего состояний нейтронного вещества.
В соответствии с современными представлениями о поведении вещества при плотностях в 10 2 - 10 3 раз, превышающих ядерную (а именно о таких плотностях идет речь, когда обсуждается внутреннее строение нейтронной звезды), внутри звезды образуются атомные ядра вблизи границы устойчивости. Более глубокое понимание может быть достигнуто в результате исследования состояния вещества в зависимости от плотности, температуры, устойчивости ядерной материи при экзотических отношениях числа протонов к числу нейтронов в ядре n p /n n , учете слабых процессов с участием нейтрино. В настоящее время практически единственной возможностью исследования вещества при плотностях больших ядерной являются ядерные реакции между тяжелыми ионами. Однако, экспериментальные данные по столкновению тяжелых ионов дают пока недостаточно информации, т. к. достижимые значения n p /n n как для ядра - мишени, так и для налетающего ускоренного ядра невелики (~ 1 - 0.7).
Точные измерения периодов радиопульсаров показали, что скорость вращения нейтронной звезды постепенно замедляется. Это связано с переходом кинетической энергии вращения звезды в энергию излучения пульсара и с эмиссией нейтрино. Небольшие скачкообразные изменения периодов радиопульсаров объясняются накоплением напряжений в поверхностном слое нейтронной звезды, сопровождающимся “растрескиванием” и “разломами”, что и приводит к изменению скорости вращения звезды. В наблюдаемых временных характеристиках радиопульсаров содержится информация о свойствах “коры” нейтронной звезды, физических условиях внутри неё и о сверхтекучести нейтронного вещества. В последнее время обнаружено значительное число ра-диопульсаров с периодами меньшими 10 мс. Это требует уточнения представлений о процессах, происходящих в нейтронных звездах.
Другой проблемой является исследование нейтринных процессов в нейтронных звездах. Эмиссия нейтрино является одним из механизмов потери энергии нейтронной звездой в течении 10 5 - 10 6 лет после её образования.

С момента зарождения Вселенной прошло уже более десятка миллиарда лет, в течение которых происходит звездная эволюция , осуществляется изменение состава космического пространства. Одни космические объекты исчезают, а на их месте появляются другие. Этот процесс происходит постоянно, однако из-за огромных временных промежутков, мы в состоянии наблюдать только один единственный кадр колоссальной и увлекательной мультисессии.

Мы видим Вселенную во всей красе, наблюдая жизнь звезд, этапы эволюции и момент предсмертной агонии. Смерть звезды – это всегда грандиозное и яркое событие. Чем крупнее и массивнее звезда, тем масштабнее катаклизм.

Нейтронная звезда является ярким примером такой эволюции, живым памятником былого звездного могущества. В этом и заключается весь парадокс. На месте массивной звезды, размеры и масса которой в десятки и сотни раз превышают аналогичные параметры нашего Солнца, возникает крошечное небесное тело диаметром в пару десятков километров. Такое превращение не происходит в один момент. Образование нейтронных звезд — результат длинного эволюционного пути развития космического монстра, растянутого в пространстве и во времени.

Физика нейтронных звезд

Подобные объекты немногочисленны во Вселенной, как может показаться на первый взгляд. Как правило, нейтронная звезда может быть одна на тысячу звезд. Секрет такого небольшого числа заключается в уникальности эволюционных процессов, которые предшествуют рождению нейтронных звезд. Все звезды по-разному проживают свою жизнь. По-разному выглядит и финал звездной драмы. Масштабы действа определяются массой звезды. Чем больше масса космического тела, чем массивнее звезда, тем выше вероятность того что ее смерть будет быстрой и яркой.

Постоянно увеличившиеся силы гравитации приводят к трансформации звездного вещества в тепловую энергию. Этот процесс невольно сопровождается колоссальным выбросом – взрывом Сверхновой. Результатом такого катаклизма становится новый космический объект – нейтронная звезда.

Проще говоря, звездная материя перестает быть топливом, термоядерные реакции утрачивают свою интенсивность и не в состоянии поддерживать в недрах массивного тела необходимые температуры. Выходом из создавшегося состояния становится коллапс — обрушение звездного газа на центральную часть звезды.

Все это приводит к мгновенному высвобождению энергии, разбрасывающей внешние слои звездной материи во все стороны. На месте звезды возникает расширяющаяся туманность. Такая трансформация может произойти с любой звездой, однако при этом результаты коллапса могут быть разными.

Если масса космического объекта невелика, к примеру, мы имеем дело с желтым карликом вроде Солнца , на месте вспышки остается белый карлик . В том случае, если масса космического монстра превышает солнечную массу в десятки раз, в результате обрушения мы наблюдаем вспышку Сверхновой. На месте былого звездного величия образуется нейтронная звезда. Сверхмассивные звезды, масса которых в сотни раз больше массы Солнца, завершают свой жизненный цикл, нейтронная звезда является промежуточным этапом. Продолжающееся гравитационное сжатие приводит к тому, что жизнь нейтронной звезды завершается появлением черной дыры.

В результате коллапса от звезды остается только ядро, продолжающееся сжиматься. В связи с этим, характерной особенностью нейтронных звезд являются высокая плотность и огромная масса при мизерных размерах. Так масса нейтронной звезды диаметром 20 км. в 1,5-3 раза больше массы нашей звезды. Происходит уплотнение или нейтронизация электронов и протонов в нейтроны. Соответственно, при уменьшении объема и размеров, стремительно увеличивается плотность и масса звездного вещества.

Состав нейтронных звезд

Точная информация о составе нейтронных звезд отсутствует. На сегодняшний день ученые-астрофизики при изучении подобных объектов пользуются рабочей моделью, предложенной физиками – ядерщиками.

Предположительно, звездное вещество в результате коллапса трансформируется в нейтронную, сверхтекучую жидкость. Этому способствует огромное гравитационное притяжение, оказывающее постоянное давление на вещество. Такая «ядерная жидкая субстанция» называется вырожденный газ и в 1000 раз плотнее воды. Атомы вырожденного газа состоят из ядра и электронов, вращающихся вокруг него. При нейтронизации внутреннее пространство атомов под воздействием сил гравитации исчезает. Электроны сливаются с ядром, образуя нейтроны. Устойчивость сверхплотной субстанции придает внутренняя гравитация. В противном случае неизбежно началась бы цепная реакция, сопровождающаяся ядерным взрывом.

Чем ближе к внешнему краю звезды, тем меньше температура и давление. В результате сложных процессов происходит «остывание» нейтронной субстанции, из которой интенсивно выделяются ядра железа. Коллапс и последующий взрыв является фабрикой планетарного железа, которое распространяется в космическом пространстве, становясь строительным материалом при формировании планет.

Именно вспышкам сверхновых Земля обязана тем, что в ее строении и структуре присутствуют частицы космического железа.

Условно рассматривая строение нейтронной звезды в микроскоп, можно выделить в строении объекта пять слоёв:

  • атмосфера объекта;
  • внешняя кора;
  • внутренние слои;
  • внешнее ядро;
  • внутреннее ядро нейтронной звезды.

Атмосфера нейтронной звезды имеет толщину всего несколько сантиметров и является самым тонким слоем. По своему составу – это слой плазмы, отвечающий за тепловое облучение звезды. Далее идет внешняя кора, которая имеет толщину в несколько сот метров. Между внешней корой и внутренними слоями — царство вырожденного электронного газа. Чем глубже к центру звезды, тем быстрее этот газ становится релятивистским. Другими словами, внутри звезды происходящие процессы связаны с уменьшением доли атомных ядер. При этом количество свободных нейтронов увеличивается. Внутренние области нейтронной звезды представляют собой внешнее ядро, где нейтроны продолжают соседствовать с электронами и протонами. Толщина этого слоя субстанции составляет несколько километров, при этом плотность материи в десятки раз выше, чем плотность атомного ядра.

Весь этот атомарный супчик существует благодаря колоссальным температурам. В момент вспышки Сверхновой, температура нейтронной звезды составляет 1011К. В этот период новый небесный объект обладает максимальной светимостью. Сразу после взрыва наступает этап стремительного остывания, температура за несколько минут падает до отметки 109К. Впоследствии процесс остывания замедляется. Несмотря на то, что температура звезды все еще велика, светимость объекта снижается. Звезда продолжает светиться только за счет теплового и инфракрасного излучения.

Классификация нейтронных звезд

Такой специфический состав звездно-ядерной субстанции обуславливает высокую ядерную плотность нейтронной звезды 1014-1015 г/см³, при этом средний размер образовавшегося объекта составляет не менее 10 и не более 20 км. Дальнейшее увеличение плотности стабилизируется силами взаимодействия нейтронов. Другими словами, вырожденный звездный газ находится в состоянии равновесия, удерживая звезду от очередного коллапса.

Довольно сложная природа таких космических объектов, какими являются нейтронные звезды, стала причиной последующей классификации, которая объясняет их поведение и существование на просторах Вселенной. Основными параметрами, на основании которых осуществляется классификация, являются период вращения звезды и масштабы магнитного поля. В процессе своего существования нейтронная звезда утрачивает энергию вращения, уменьшается и магнитное поле объекта. Соответственно, небесное тело переходит из одного состояния в другое, среди которых наиболее характерными выделяются следующие типы:

  • Радиопульсары (эжекторы) представляют собой объекты, которые имеют малый период вращения, однако сила магнитного поля у них остается достаточно большой. Заряженные частицы, совершая движение вдоль силовых полей, в местах обрыва покидают оболочку звезды. Небесное тело данного типа эжектирует, периодически наполняя Вселенную радиоимпульсами, фиксируемыми в радиочастотном диапазоне;
  • Нейтронная звезда – пропеллер. В данном случае у объекта крайне малая скорость вращения, однако, магнитное поле не обладает достаточной силой, чтобы притягивать из окружающего пространства элементы материи. Звезда не излучает импульсов, не происходит в данном случае и аккреция (падение космической материи);
  • Рентгеновский пульсар (аккретор). Такие объекты имеют малую скорость вращения, но ввиду сильного магнитного поля звезда интенсивно поглощает материал из космического пространства. В результате в местах падения звездной материи на поверхности нейтронной звезды скапливается плазма, разогретая до миллионов градусов. Эти точки на поверхности небесного тела становятся источниками пульсирующего теплового, рентгеновского излучения. С появлением мощных радиотелескопов, способных заглянуть в глубину космоса в инфракрасном и рентгеновском диапазоне, стало возможным быстрее выявлять довольно много обычных рентгеновских пульсаров;
  • Георотатор – объект, который имеет малую скорость вращения, при этом на поверхности звезды в результате аккреции происходит скапливание звездной материи. Сильное магнитное поле препятствует образованию в поверхностном слое плазмы, и звезда постепенно набирает свою массу.

Как видно из существующей классификации, каждая из нейтронных звезд ведет себя по-разному. Отсюда вытекают и различные способы их обнаружения, и возможно, различна будет судьба этих небесных тел в будущем.

Парадоксы рождения нейтронных звезд

Первая версия о том, что нейтронные звезды — продукты взрыва Сверхновой, сегодня не является постулатом. Существует теория, что здесь может быть использован и другой механизм. В двойных звездных системах пищей для новых звезд становятся белые карлики. Звездное вещество постепенно перетекает из одного космического объекта на другой, увеличивая его массу до состояния критической. Другими словами, в будущем один из пары белый карлик – это нейтронная звезда.

Нередко одиночная нейтронная звезда, пребывая в тесном окружении звездных скоплений, обращает свое внимание на ближайшую соседку. Компаньонами нейтронных звезд могут стать любые звезды. Эти пары возникают довольно часто. Последствия такой дружбы зависят от массы компаньона. Если масса нового компаньона невелика, то украденное звездное вещество будет скапливаться вокруг в виде аккреционного диска. Этот процесс, сопровождаемый большим периодом вращения, приведет к тому, что звездный газ разогреется до температуры в миллион градусов. Нейтронная звезда вспыхнет потоком рентгеновского излучения, становясь рентгеновским пульсаром. У этого процесса есть два пути:

  • звезда остается в космосе тусклым небесным телом;
  • тело начинает излучать короткие рентгеновские вспышки (барстеры).

Во время рентгеновских вспышек яркость звезды стремительно увеличивается, делая такой объект в 100 тысяч раз ярче Солнца.

История изучения нейтронных звезд

Нейтронный звезды стали открытием второй половины XX века. Ранее обнаружить подобные объекты в нашей галактике и во Вселенной было технически невозможно. Тусклый свет и малые размеры таких небесных тел не позволяли их обнаружить с помощью оптических телескопов. Несмотря на отсутствие визуального контакта, существование подобных объектов в космосе предсказывали теоретически. Первая версия о существовании звезд с огромной плотностью появилась с подачи советского ученого Л. Ландау в 1932 году.

Через год, в 1933 году уже за океаном было сделано серьезное заявление о существовании звезд с необычным строением. Астрономы Фриц Цвикки и Вальтер Бааде выдвинули обоснованную теорию, что на месте вспышки Сверхновой обязательно остается нейтронная звезда.

В 60-е годы XX столетия обозначился прорыв в астрономических наблюдениях. Этому способствовало появление рентгеновских телескопов, способных выявлять в космосе источники мягкого рентгеновского излучения. Используя в наблюдениях теорию о существовании в космосе источников сильного теплового излучения, астрономы пришли к выводу, что мы имеем дело с новым типом звезд. Весомым дополнением теории о существовании нейтронных звезд стало открытие в 1967 году пульсаров. Американец Джоселин Белл с помощью своей радиоаппаратуры обнаружил поступающие из космоса радиосигналы. Источником радиоволн являлся стремительно вращающийся объект, который действовал подобно радиомаяку, посылая сигналы во все стороны.

Такой объект непременно имеет большую скорость вращения, что для обычной звезды стало бы фатальным. Первым пульсаром, который был открыт астрономами, является PSR В1919+21, находящийся на расстоянии 2283,12 св. года от нашей планеты. По мнению ученых, ближайшей нейтронной звездой к Земле является космический объект RX J1856.5-3754, расположенный в созвездии Южная Корона, который был открыт в 1992 году в обсерватории Чандра. Расстояние от Земли до ближайшей нейтронной звезды составляет 400 световых лет.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Введение

На протяжении всей своей истории человечество не прекращало попыток познать вселенную. Вселенной называют совокупность всего существующего, всех материальных частиц пространства между этими частицами. По современным представлениям возраст Вселенной составляет около 14 миллиардов лет.

Размеры видимой части вселенной составляют примерно 14 миллиардов световых лет (один световой год - это расстояние, которое проходит свет в вакууме за один год). По оценкам некоторых ученных протяженность вселенной составляет 90 миллиардов световых лет. Для того, чтобы было удобно оперировать такими огромными расстояниями используют величину названую Парсек. Парсек - это такое расстояние, с которого средний радиус земной орбиты, перпендикулярный лучу зрения, виден под углом одной угловой секунды. 1 парсек = 3,2616 световых лет.

Во вселенной находится огромное число различных объектов, название которых у многих на слуху, такие как планеты и спутники, звезды, черные дыры и др. Звезды очень разнообразны по своей яркости, размерам, температуре, и другим параметрам. К звездам относят такие объекты как белые карлики, нейтронные звезды, гиганты и сверх гиганты, квазары и пульсары. Особый интерес вызывают центры галактик. По современным представлениям, на роль объекта, находящегося в центре галактики подходит черная дыра. Черные дыры - это уникальное по своим свойствам продукты эволюции звезд. Экспериментальная достоверность существования черных дыр зависит от справедливости общей теории относительности.

Кроме галактик вселенную наполняют туманности (межзвездные облака, состоящие из пыли, газа и плазмы), реликтовое излучение, пронизывающие всю вселенную, и другие малоизученные объекты.

Нейтронные звезды

Нейтронная звезда -- астрономический объект, являющийся одним из конечных продуктов эволюции звёзд, состоящий, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой (?1 км) корой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звёзд сравнимы с массой Солнца, но типичный радиус составляет лишь 10-20 километров. Поэтому средняя плотность вещества такой звезды в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8*1017 кг/м?). Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерной материи, возникающее за счёт взаимодействия нейтронов.

Многие нейтронные звёзды обладают чрезвычайно высокой скоростью вращения, до тысячи оборотов в секунду. Считается, что нейтронные звезды рождаются во время вспышек сверхновых звёзд.

Силы тяготения в нейтронных звёздах уравновешиваются давлением вырожденного нейтронного газа, максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера -- Волкова, численное значение которого зависит от (пока ещё плохо известного) уравнения состояния вещества в ядре звезды. Существуют теоретические предпосылки того, что при ещё большем увеличении плотности возможно перерождение нейтронных звезд в кварковые.

Магнитное поле на поверхности нейтронных звёзд достигает значения 1012--1013 Гс (Гс- Гаусс - единица измерения магнитной индукции) , именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров. Начиная с 1990-х годов, некоторые нейтронные звёзды отождествлены как магнетары -- звёзды, обладающие магнитными полями порядка 1014 Гс и выше. Такие поля (превышающие «критическое» значение 4,414·1013 Гс, при котором энергия взаимодействия электрона с магнитным полем превышает его энергию покоя) привносят качественно новую физику, так как становятся существенны специфические релятивистские эффекты, поляризация физического вакуума и т. д.

Классификация нейтронных звёзд

Два основных параметра, характеризующих взаимодействие нейтронных звёзд с окружающим веществом и, как следствие, их наблюдательные проявления -- период вращения и величина магнитного поля. Со временем звезда расходует свою вращательную энергию, и её период вращения увеличивается. Магнитное поле тоже ослабевает. По этой причине нейтронная звезда за время своей жизни может менять свой тип.

Эжектор (радиопульсар) - сильные магнитные поля и малый период вращения. В простейшей модели магнитосферы, магнитное поле вращается твердотельно, то есть с той же угловой скоростью, что и сама нейтронная звезда. На определённом радиусе линейная скорость вращения поля приближается к скорости света. Этот радиус называется радиусом светового цилиндра. За этим радиусом обычное дипольное поле существовать не может, поэтому линии напряжённости поля в этом месте обрываются. Заряженные частицы, двигающиеся вдоль линий магнитного поля, через такие обрывы могут покидать нейтронную звезду и улетать на бесконечность. Нейтронная звезда данного типа эжектирует (извергает, выталкивает) релятивистские заряженные частицы, которые излучают в радиодиапазоне. Для наблюдателя эжекторы выглядят как радиопульсары.

Пропеллер - скорость вращения уже недостаточна для эжекции частиц, поэтому такая звезда не может быть радиопульсаром. Однако она всё ещё велика, и захваченная магнитным полем окружающая нейтронную звезду материя не может упасть, то есть аккреция вещества не происходит. Нейтронные звёзды данного типа практически не имеют наблюдаемых проявлений и изучены плохо.

Аккретор (рентгеновский пульсар) - скорость вращения снижается до такой степени, что веществу теперь ничего не мешает падать на такую нейтронную звезду. Плазма, падая, движется по линиям магнитного поля и ударяется о твёрдую поверхность в районе полюсов нейтронной звезды, разогреваясь до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, светится в рентгеновском диапазоне. Область, в которой происходит столкновение падающего вещества с поверхностью звезды, очень мала -- всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, что наблюдатель воспринимает как пульсации. Такие объекты называются рентгеновскими пульсарами.

Георотатор - скорость вращения таких нейтронных звёзд мала и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией. Подобный механизм срабатывает в магнитосфере Земли, из-за чего данный тип и получил своё название.

НЕЙТРОННАЯ ЗВЕЗДА
звезда, в основном состоящая из нейтронов. Нейтрон - это нейтральная субатомная частица, одна из главных составляющих вещества. Гипотезу о существовании нейтронных звезд выдвинули астрономы В.Бааде и Ф.Цвикки сразу после открытия нейтрона в 1932. Но подтвердить эту гипотезу наблюдениями удалось лишь после открытия пульсаров в 1967.
См. также ПУЛЬСАР . Нейтронные звезды образуются в результате гравитационного коллапса нормальных звезд с массами в несколько раз больше солнечной. Плотность нейтронной звезды близка к плотности атомного ядра, т.е. в 100 млн. раз выше плотности обычного вещества. Поэтому при своей огромной массе нейтронная звезда имеет радиус всего ок. 10 км. Из-за малого радиуса нейтронной звезды сила тяжести на ее поверхности чрезвычайно велика: примерно в 100 млрд. раз выше, чем на Земле. От коллапса эту звезду удерживает "давление вырождения" плотного нейтронного вещества, не зависящее от его температуры. Однако если масса нейтронной звезды станет выше примерно 2 солнечных, то сила тяжести превысит это давление и звезда не сможет противостоять коллапсу.
См. также ГРАВИТАЦИОННЫЙ КОЛЛАПС . У нейтронных звезд очень сильное магнитное поле, достигающее на поверхности 10 12-10 13 Гс (для сравнения: у Земли ок. 1 Гс). С нейтронными звездами связывают небесные объекты двух разных типов.
Пульсары (радиопульсары). Эти объекты строго регулярно излучают импульсы радиоволн. Механизм излучения до конца не ясен, но считают, что вращающаяся нейтронная звезда излучает радиолуч в направлении, связанном с ее магнитным полем, ось симметрии которого не совпадает с осью вращения звезды. Поэтому вращение вызывает поворот радиолуча, периодически направляющегося на Землю.
Рентгеновские двойные. С нейтронными звездами, входящими в двойную систему с массивной нормальной звездой, связаны также пульсирующие рентгеновские источники. В таких системах газ с поверхности нормальной звезды падает на нейтронную звезду, разгоняясь до огромной скорости. При ударе о поверхность нейтронной звезды газ выделяет 10-30% своей энергии покоя, тогда как при ядерных реакциях этот показатель не достигает и 1%. Нагретая до высокой температуры поверхность нейтронной звезды становится источником рентгеновского излучения. Однако падение газа не происходит равномерно по всей поверхности: сильное магнитное поле нейтронной звезды захватывает падающий ионизованный газ и направляет его к магнитным полюсам, куда он и падает, как в воронку. Поэтому сильно нагреваются только районы полюсов, которые на вращающейся звезде становятся источниками рентгеновских импульсов. Радиоимпульсы от такой звезды уже не поступают, поскольку радиоволны поглощаются в окружающем ее газе.
Состав. Плотность нейтронной звезды растет с глубиной. Под слоем атмосферы толщиной всего несколько сантиметров находится жидкая металлическая оболочка толщиной несколько метров, а ниже - твердая кора километровой толщины. Вещество коры напоминает обычный металл, но гораздо плотнее. В наружной части коры это в основном железо; с глубиной в его составе увеличивается доля нейтронов. Там, где плотность достигает ок. 4*10 11 г/см3, доля нейтронов увеличивается настолько, что некоторые из них уже не входят в состав ядер, а образуют сплошную среду. Там вещество похоже на "море" из нейтронов и электронов, в которое вкраплены ядра атомов. А при плотности ок. 2*10 14 г/см3 (плотность атомного ядра) вообще исчезают отдельные ядра и остается сплошная нейтронная "жидкость" с примесью протонов и электронов. Вероятно, нейтроны и протоны ведут себя при этом как сверхтекучая жидкость, подобная жидкому гелию и сверхпроводящим металлам в земных лабораториях.

При еще более высоких плотностях в нейтронной звезде образуются наиболее необычные формы вещества. Может быть, нейтроны и протоны распадаются на еще более мелкие частицы - кварки; возможно также, что рождается много пи-мезонов, которые образуют так называемый пионный конденсат.
См. также
ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ ;
СВЕРХПРОВОДИМОСТЬ ;
СВЕРХТЕКУЧЕСТЬ .
ЛИТЕРАТУРА
Дайсон Ф., Тер Хаар Д. Нейтронные звезды и пульсары. М., 1973 Липунов В.М. Астрофизика нейтронных звезд. М., 1987

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "НЕЙТРОННАЯ ЗВЕЗДА" в других словарях:

    НЕЙТРОННАЯ ЗВЕЗДА, очень маленькая звезда с большой плотностью, состоящая из НЕЙТРОНОВ. Является последней стадией эволюции многих звезд. Нейтронные звезды образуются, когда массивная звезда вспыхивает в качестве СВЕРХНОВОЙ звезды, взрывая свои… … Научно-технический энциклопедический словарь

    Звезда, вещество которой, согласно теоретическим представлениям, состоит в основном из нейтронов. Нейтронизация вещества связана с гравитационным коллапсом звезды после исчерпания в ней ядерного горючего. Средняя плотность нейтронных звезд 2.1017 … Большой Энциклопедический словарь

    Строение нейтронной звезды. Нейтронная звезда астрономический объект, являющийся одним из конечных продук … Википедия

    Звезда, вещество которой согласно теоретическим представлениям состоит в основном из нейтронов. Средняя плотность такой звезды Нейтронная звезда2·1017 кг/м3, средний радиус 20 км. Обнаруживается по импульсному радиоизлучению см. Пульсары … Астрономический словарь

    Звезда, вещество которой, согласно теоретическим представлениям, состоит в основном из нейтронов. Нейтронизация вещества связана с гравитационным коллапсом звезды после исчерпания в ней ядерного горючего. Средняя плотность нейтронной звезды… … Энциклопедический словарь

    Гидростатически равновесная звезда, в во к рой состоит в осн. из нейтронов. Образуется в результате превращения протонов в нейтроны при гравитац. коллапсе на конечных стадиях эволюции достаточно массивных звёзд (с массой, в неск. раз превышающей… … Естествознание. Энциклопедический словарь

    Нейтронная звезда - одна из стадий эволюции звезд, когда в результате гравитационного коллапса она сжимается до таких малых размеров (радиус шара 10 20 км), что электроны оказываются вдавленными в ядра атомов и нейтрализуют их заряд, все вещество звезды становится… … Начала современного естествознания

    Калвера Нейтронная звезда. Была обнаружена астрономами из Пенсильванского государественного университета США и канадского университета Макгилла в созвездии Малой медвидице. Звезда необычна по своим характеристикам и не похожа ни на одну… … Википедия

    - (англ. runaway star) звезда, которая движется с аномально высокой скоростью по отношению к окружающей межзвездной среде. Собственное движение подобной звезды часто указывается именно относительно звездной ассоциации, членом которой… … Википедия