Сравним гиперзвуковое оружие рф и сша. Гиперзвуковое оружие: принцип действия, сравнение с ядерным

Высокий показатель рельсотронного разгона обусловлен работой электромагнитных сил Лоренца в механизме пушки. Они возникают и начинают действовать на снаряд при коротком замыкании двух параллельных токонесущих (со знаком минус и со знаком плюс) направляющих рельсов после подачи на них очень мощного, но очень короткого импульса тока. В качестве токозамыкательного элемента используется специальная арматура со встроенным в нее снарядом или сам снаряд, лежащий на рельсах и их замыкающий. Силы Лоренца направлены так, чтобы вытолкнуть снаряд из пушки, и он вылетает из ствола с гиперзвуковой скоростью. Разгону снаряда также способствует давление плазмы, которая образуется за снарядом от действия мощного дугового разряда. Плазма со скоростью 50−100 км/ч действует на снаряд, как своеобразная мощная реактивная струя.

Рельсы — дорогие и уязвимые

В американских опытах по созданию электромагнитного оружия в качестве арматуры, как правило, используется специальной формы «башмак», в котором закреплен снаряд. Такая конструкция исключает контакт снаряда с рельсами. Направляющие, изготовленные из бескислородной меди с серебряным покрытием, сильно подвержены износу от трения и эрозии. При использовании металлических снарядов, выполняющих замыкание своим «телом», замена рельсов требуется после двух-трех выстрелов.

Название «рельсотрон» в 50-е годы прошлого века придумал академик Л. Арцимович, мировой специалист в области термояда и физики высокотемпературной плазмы. Изобретенный им ускоритель плазмы был выдвинут на Нобелевскую премию, но СССР снял кандидатуру ученого с обсуждения из-за секретности разработки.

Сам снаряд изготавливают из тугоплавкого вольфрама. Высокая плотность этого металла позволяет даже тяжелый снаряд сделать малогабаритным, что решает проблему размещения боеприпасов в ограниченных объемах зарядных отделений или снарядных погребов.

Однако не только быстрый износ рельсов мешает рельсотрону превратиться в супероружие, есть и другие препятствия. Прежде всего это источники питания. Рельсотрон требует мощной системы электропитания в виде униполярных генераторов, компульсаторов, мегаваттных конденсаторов-ионисторов. Эти устройства позволяют формировать очень мощный короткий электрический импульс, передаваемый на рельсы. В лабораторных условиях можно мириться с солидными по размеру и весу блоками аппаратуры. На флоте фактор веса и объема тоже не столь существен: у корабля вполне хватит водоизмещения, чтобы упаковать 130 т оборудования вдобавок к самим стволам пушек.


Рейлган Blitzer производства компании General Atomics (США) размещен на двух трейлерах — на одном собственно пушка, на другом — энергетическая установка. Разработка ЭМП началась в 2005 году и завершилась в 2011-м.

Для наземных же армейских рельсотронов проблема представляется более сложной. Если разместить оборудование на танковых шасси, пришлось бы вести в бой 78-тонного монстра. Выходом стало распределение установки между двумя автомобильными трейлерами (на одном сама пушка, на другом — «энергетика»), этот вариант был реализован в американской армейской пушке Blitzer. Еще один тягач с прицепом отдали станции управления. Для питания корабельных рельсотронов (на напичканных хай-теком эсминцах проекта Zumwalt их предположительно будет два) предусмотрен запас мощности судовой установки (зарезервированный только для рельсотронов) не менее 35−45 МВт. Энергии должно хватить, чтобы обеспечить разгон снаряда до 2000−2500 м/с. Тогда он, получив дульную энергию в 64 МДж, сможет улететь на расстояние до 400 км и, сохранив 20 МДж энергии, поразить цель мощным кинетическим ударом. Уже подсчитано, что попадание такого снаряда весом 18−20 кг в авианосец произведет эффект ядерного удара.

32 «Гольфа» по цели

У армейских пушек меньшая дальность стрельбы — 80−160 км, отчего «энергетики» на выстрелы потребуется примерно вдвое меньше корабельной. Для справки: энергией 1 МДж обладает легковой Golf при скорости 160 км/ч. Снаряд рельсотрона весом 10 кг с дульной энергией 32 МДж при скорости 2500 м/с способен пробить три бетонные стенки или шесть 12-миллиметровых стальных листов, что по эффекту равносильно взрыву 150 кг тротила.


Серьезными препятствиями на пути широкого использования рейлганов являются резонансные явления в рельсовой системе и эффект расталкивания рельсов от действия сил Лоренца, электромагнитная совместимость с электронными системами пушки, необходимость охлаждения ствола и блоков электроники и др.

В процессе натурных испытаний была выявлена также необходимость в быстром перезаряжании пушки для увеличения темпа стрельбы по крайней мере до 6−10 выстрелов в минуту. В этом году работающая в кооперации с американским ВПК британская компания BAE Systems провела огневые испытания на полигоне ВМС США в штате Виргиния. Как заявляют британцы, они рассчитывают в ближайшие пару лет увеличить скорострельность своей установки до 10 выстрелов в минуту при весе снаряда 16 кг, так что эта проблема постепенно находит решение.



Предполагаемый вес снаряда: 18 кг; Дульная скорость: 2,5 км/с (7,5 Маха), вдвое больше, чем у обычных пушек; Дальность действия: 400 км (у обычных корабельных орудий — не более 80 км); Снаряд: уничтожает цель за счет энергии удара, взрывчатых веществ не содержит; Длина ствола орудия: 10 м

Неубиваемая электроника

Снаряд имеет наиболее приемлемую для гиперзвука коническую удлиненную форму с небольшим затуплением носка — это своего рода заостренный стержень. Стабилизатор в хвостовой части позволяет удерживать снаряд на траектории полета. Создание такого боеприпаса — это еще одна проблемная область рельсотронной программы.

США с 2012 года ведет разработку унифицированного гиперзвукового снаряда HVP, сегодня он уже проходит испытания стрельбой. Унифицированный он потому, что будет использоваться не только в рельсотронах, но и в обычных корабельных пушках разных калибров, которые хотят оставить в смешанном составе с рельсотронами на эсминцах Zumwalt. Эти же боеприпасы будут применяться и в наземных пушках.

Чтобы HVP подходил для пушек разных калибров, его будут изготавливать в вариантах подкалиберных выстрелов со снарядом в поддоне под каждый конкретный калибр. Поддон при вылете сборки из ствола разбивается на части, дальше летит только снаряд. В испытаниях 2015 года стреляли HVP калибром 90 мм и длиной 609 мм. Собственно снаряд весит 12,7 кг, а вся сборка — 18,5 кг. Остальные 5,8 кг — это поддон.


Снаряд помещается между двух токопроводящих рельсов. Арматура защищает рельсы от непосредственного соприкосновения со снарядом

Снаряды HVP планируют сделать корректируемыми в полете, для чего их оснастят модулем точного наведения, работающим с системой GPS. Американцы заявили, что у них уже имеются работоспособные электронные системы управления, выдерживающие перегрузки 30 000 — 40 000 g при разгоне, воздействие плазмы температурой 20 000 — 25 000 градусов и электромагнитные поля сверхвысокой мощности. Есть данные об успешных испытаниях подобных снарядов в 2016 году. Ожидается, что полная отработка HVP завершится к 2020 году, а в серию они будут переданы к 2025 году. Блок управления приведет к удорожанию снаряда, который и в исходном (без электроники) варианте стоит 25 тысяч долларов. Но все равно это существенно дешевле корабельных управляемых ракет ценой 0,5−1,5 млн.

Три грамма чудовищной мощи

Особенность американского подхода к разработке рельсотрона состоит в поэтапном наращивании возможностей с последовательным достижением улучшенных параметров: скорости разгона снаряда от 2000 до 3000 м/с, дальности стрельбы с 80−160 до 400−440 км, дульной энергии снаряда от 32 до 124 МДж, веса снаряда от 2−3 до 18−20 кг, скорострельности от 2−3 выстрелов в минуту до 8−12, мощности источников энергии от 15 до более чем 40−45 МВт, ресурса ствола от промежуточных 100 выстрелов к 2018 году до 1000 выстрелов к 2025 году, длины ствола от начальной 6 м до конечной 10 м.


Подобных сведений официально в России не публикуют, однако в прошлом году первый заместитель председателя Комитета Совета Федерации по обороне Франц Клинцевич за-явил, что в нашей стране активно ведутся работы в области создания электромагнитного оружия.

Хорошо известны успешные испытания рельсотрона (правда, не боевого, а лабораторного класса) в подмосковной Шатуре, которые провели в филиале Объединенного института высоких температур РАН под руководством академика В. Фортова. Рельсотрон с длиной ствола 2 м стрелял пульками массой в единицы-десятки граммов. Российское ноу-хау — предварительный разгон снаряда перед подачей в ствол — позволяет получать дульные скорости выше американских. Так, в январе 2017 года снаряд из плотного пластика весом 15 г был разогнан до скорости 3000 м/с и пробил мишень из металла толщиной во много сантиметров. Несколько раньше снаряд весом 3 г был разогнан до скорости 6250 м/с (почти первая космическая) и при попадании в стальную мишень попросту ее испарил.


Китай, по сообщениям прессы, находится на стадии НИР и НИЭР, которые сосредоточены в специально созданной корпорации CASIC в научном центре Ухань (WUHAN). Представители КНР заявили, что разрабатывают наземный рельсотрон наподобие американского Blitzer и обещают по проекту 055А к 2020 году создать орудие калибра 130 мм.

Битва за гиперзвук: Россия на годы обогнала Запад

РИА Новости сообщило о крайне интересном выступлении представителя ВМС Великобритании Пола Берка на симпозиуме Стратегического командования вооруженных сил США в Небраске. Тот заявил, что британские военные пристально наблюдают за тем, каких успехов добилась Россия в области создания гиперзвукового оружия. И вынужден признать, что ученые и конструкторы туманного Альбиона не в состоянии даже хоть как-то приблизиться к достижениям своих русских коллег.

После чего последовал ошеломляющий вывод: любые гиперзвуковые вооружения должны, оказывается, «регулироваться международными нормами и правилами». То есть - поскольку у нас ничего не получается, то необходимо связать Россию по рукам и ногам . Разумеется, в одностороннем порядке, попытавшись продавить решение не через Совбез ООН , где Москва обладает правом вето, а через Генеральную ассамблею этой организации.

Но вот что примечательно. Предложение не встретило отпора у американских коллег Берка. И это может показаться странным. Ведь довольно давно США заявляют о собственных крупных успехах в создании гиперзвукового оружия. В ряд их программ по достижению ракетами запредельных скоростей вкладываются очень серьезные средства. Как финансовые, так и интеллектуальные. Но вот промолчали же, когда речь зашла о постановке такого рода разработок под строгий международный контроль! Это молчание, на мой взгляд, может означать только одно: косвенное признание Вашингтона , что США в этой области сильно отстали от России.

Существующие темпы производства КРМБ не позволяют нам и мечтать о «быстром глобальном ударе»

И это похоже на правду. Поскольку в нашей стране уже проходят испытания конкретного оружия - гиперзвуковой ракеты морского базирования «Циркон». Также испытывается маневрирующий на гиперзвуковой скорости боевой блок перспективной межконтинентальной баллистической ракеты - «изделие 4202».

Прежде чем оценить положение дел в области гиперзвука «у нас» и «у них», неплохо было бы вспомнить, как США и Великобритания придерживаются этих самых международных норм и правил, когда речь идет о создании их собственного принципиально нового оружия.

Появившийся в 1908 году британский линкор «Дредноут» стал кораблем нового класса, которого не было ни у одного военного флота в мире. Спрашивал ли Лондон у кого-нибудь разрешение на его строительство и боевое применение?

США предоставляют нам более скандальные примеры. Таковой была не только пионерная разработка ядерного оружия, но и его испытания на мирных жителях двух японских городов. Отличились американцы и во Вьетнаме, используя напалм, который привел не только к уничтожению миллионов людей, но и к генетическим изменениям, которые проявляются и по сей день.

Не иначе, как международными нормами и правилами, руководствовались США, и когда в одностороннем порядке вышли из Договора ПРО!

Что касается собственно «гиперзвуковой гонки», то первыми в нее впряглись именно американцы. В 1959 году в США начались полеты на экспериментальном пилотируемом ракетоплане Х-15, продолжавшиеся до 1970 года. Наивысшая скорость, которую удалось на нем достичь, составила 6,5 М.

Затем последовало еще несколько военных программ, которые не продвинулись дальше эскизного проекта. В конце концов, это направление было признано тупиковым. Дело в том, что в Х-15 использовался жидкостный реактивный двигатель (ЖРД), прекрасно зарекомендовавший себя в освоении космоса . Однако в связи с тем, что он в качестве окислителя использует сжиженный кислород, находящийся в баках ограниченного объема, длительность работы ЖРД была ограниченной, через несколько секунд (до минуты) заканчивался окислитель и полет продолжался по инерции. Да и тягу такого двигателя, как выяснилось, можно регулировать в очень ограниченном диапазоне.

То есть, ЖРД похож на спринтера, который после старта выжимает из себя максимум возможного на протяжении краткого отрезка времени. Для гиперзвукового оружия необходим принципиально иной двигатель.

Попытка решить данную проблему (условно успешная) была произведена уже в Советском Союзе. В 70-е годы в МКБ «Радуга» началась научно-исследовательские, а затем и опытно-конструкторские работы по созданию ракеты Х-90 . В конце 80-х - начале 90-х она уже устойчиво летала со скоростью от 3 М до 4 М . Но в 1991 году в стране закончились деньги. Потом «закончилась» и сама та страна. И проект был закрыт.

Но все же «Радуга» разработала и воплотила в конкретном работоспособном изделии гиперзвуковой прямоточно-воздушный реактивный двигатель (ГПВРД). Схематически он устроен примерно так же, как и ЖРД. Но в качестве окислителя в нем используется атмосферный воздух, поступающий в камеру сгорания от воздухозаборников. Однако существует масса нюансов, как, например, меньшая эффективность воздуха в сравнении с чистым кислородом. Еще одна особенность - ГПВРД начинает работать при достижении летательным аппаратом скорости в 4 М. И это приводит к высокой сложности его разработки и испытаний, а также к сложному способа запуска.

Теоретически ГПВРД может развивать скорость до 25 М, но практический потолок ниже - порядка 17 М-19 М .

Еще больший, чем в ЦКБ «Радуга», прорыв был совершен в московском Центральном институте авиационного моторостроения им. П. И. Баранова (ЦИАМ). Здесь в 1979 году стартовала НИР «Холод» по созданию ГПВРД, использующего криогенные технологии. На базе зенитной ракеты 5В28 от ЗРК С-200 была создана летающая лаборатория, на которой испытывались различные варианты построения ГПВРД. Наивысший результат был получен в 1998 году, когда скорость достигла значения в 6,5 М .

После чего ЦИАМ совместно с целым рядом соисполнителей приступил к выполнению НИР «Холод-2» . В результате должна была быть достигнута скорость в 14 М . Но все ограничилось постройкой макета, который показали на авиасалоне МАКС-99. И тут тоже «закончились деньги».

Необходимо сказать, что российские конструкторы здорово помогли американцам, которые тогда называли нас «друзьями». Американцам были проданы все результаты испытаний летающей лаборатории по теме «Холод». А последнее испытание (в 1998 году) было проведено за счет финансирования США. Взамен они получили доступ ко всем бесценным исследовательским материалам.

В результате в 2001 году чудесным образом, без какого бы то ни было исследовательского задела, в США были построены сразу три экспериментальных опытных образца гиперзвукового аппарата Х-41 . В 2001 году первый из них взорвался. В 2004 году в двух последовательных испытаниях была получена скорость 9,6 М . По сути, это была летающая лаборатория, на которой отрабатывалась возможность достижения гиперзвуковых скоростей за счет использования ГПВРД. Х-41 выводился на режим нормальной работы двигателя при помощи ракеты «Пегас». Та в свою очередь поднималась в воздух стратегическим бомбардировщиком В-52. После третьего запуска Х-41 программа была свернута .

А тут и «дружба навек» с Россией завершилась. И каждая держава пошла дальше своим путем. В США были запущены три программы. Две из них относятся к области создания бездвигательных планирующих аппаратов, достигающих гиперзвуковой скорости за счет ускорения, получаемого в результате спуска в атмосферу в процессе суборбитального полета. Разгоняют аппараты и поднимают на необходимую высоту мощные ракеты. Об этих экспериментах мы скажем подробнее ниже.

Самый известный заокеанский проект - создание очередного экспериментального гиперзвукового летательного аппарата Boeing X-51 . Его испытания начались в 2010 году. К настоящему моменту аппарату удалось достичь скорости в 5,1 М, пролетев 420 км. Запуски производятся с бомбардировщика В-52. Пентагон называет Х-51 крылатой ракетой, точнее - прототипом таковой.

Однако это не так. Компетентное американское издание «Популярная механика» сообщает, что главная задача данного проекта в том, чтобы добиться устойчивой работы крайне капризного при эксплуатации ГПВРД. Испытания проходят с переменным успехом : то ракета, преодолев расчетное расстояние, падает в океан в заданном квадрате, то взрывается вскоре после старта, то заворачивает не туда, и ее приходится дистанционно уничтожать.

То есть - это типичная летающая лаборатория, а никакой не прототип . Предполагается, что на основании опыта, полученного в результате развития проекта Х-51, и будет создаваться ударное гиперзвуковое оружие. А именно - ракета воздушного базирования.

А как дела у России? Маневрирующая крылатая ракета 3М22 «Циркон» морского базирования - это уже конкретное оружие, находящееся на этапе испытаний. Ею будут вооружены тяжелые атомные ракетные крейсера «Петр Великий » и «Адмирал Нахимов». Предположительная дальность полета - от 500 км до 1000 км. Ракету уже разогнали до скорости 8 М. Принятие на вооружение ожидается в конце этого десятилетия либо в начале следующего.

Есть сведения, что идут работы по созданию модификации «Циркона» и для воздушного базирования. Во всяком случае, в ходе российско-индийского проекта по созданию гиперзвуковой ракеты «БраМос» предполагается сделать ее и для надводных кораблей, и для самолетов.

Тем временем, в США существуют и еще два проекта, которые основаны не на использовании ГПВРД, а на разгоне летательного аппарата мощной межконтинентальной ракетой и пикировании из ближнего космоса с набором гиперзвуковой скорости. Это Advanced Hypersonic Weapon (AHW) и DARPA Falcon Project. Первый продолжает вяло развиваться, второй - закрыт по причине бесперспективности.

Ракета AHW в единственном удачном пуске с космодрома Кадьяк на Аляске, планируя из космоса и управляясь по GPS, достигла скорости 8 М . При этом полет был управляемым, но не маневрируемым.

Совсем недавно, в середине июля, поступило сообщение, что сделанный примерно по той же схеме австралийско-американский аппарат, выведенный в космос, устремился к земле на скорости 11 M . При этом не сообщается, какая доля в достигнутой скорости принадлежит ГПВРД, а какая - ракете, поднявшей аппарат на высоту в 278 км.

Необходимо отметить, что все эти проекты носят исследовательский характер и не имеют прямого отношения к созданию конкретного гиперзвукового оружия.

Что же касается российской ситуации с созданием боевой маневрирующей с гиперзвуковой скоростью боеголовки МБР, то она, как и «Циркон», проходит испытания. Именно, испытания, а не исследование возможностей построения такого аппарата. Это «изделие 4202» или Аэробаллистическое гиперзвуковое боевое оснащение (АГБО), разработанное, как и «Циркон», в НПО Машиностроения. Предполагается, что им будут оснащаться перспективные МБР «Сармат». Испытания проводят с 2004 года. По разным данным состоялось от 5 до 7 пусков.

Скорость АГБО выше, чем у «Циркона» - 7 М-12 М. Ракета «Сармат» будет способна запускать до трех боевых блоков . Полет, как и у «Циркона», происходит с маневрированием за счет аэродинамических рулей на небольших высотах, что делает АГБО трудноулавливаемой для радаров. Малозаметности добавляет еще и то, что блок окутан плазмой , поглощающей и не отражающей сигналы радиолокационных станций. В совокупности с маневрированием с громадными перегрузками это делает и противокорабельную ракету, и АГБО практически недосягаемыми для современных и перспективных комплексов ПРО . Что, очевидно, очень тревожит Запад.

Таким образом, можно констатировать: работы по созданию российского и американского гиперзвукового оружия находятся на разных стадиях. У нас вовсю идут испытания перед принятием на вооружение. У них пока - только исследовательские работы. Эксперты считают, что США идет по этому пути как минимум с семилетним отставанием . Вот именно поэтому и затеваются разговоры о необходимости подрезать России крылья хотя бы при помощи бюрократических механизмов.

Плачь США: Сармат беспощадный, старший брат Воеводы

Более подробную и разнообразную информацию о событиях, происходящих в России, на Украине и в других странах нашей прекрасной планеты, можно получить на Интернет-Конференциях , постоянно проводящихся на сайте «Ключи познания» . Все Конференции – открытые и совершенно безплатные . Приглашаем всех интересующихся…

17 марта 2016 года стало известно, что Россия начинает испытания гиперзвуковых противокорабельных крылатых ракет (ПКР) «Циркон».


Предположительно, ракета сможет развивать скорость в 5−6 раз превышающую скорость звука (5−6М - при полёте на небольшой высоте это около 6−7 тысяч км/ч). Изделие планируется устанавливать на перспективные многоцелевые атомные подводные лодки 5 поколения «Хаски», а также заменить ими тяжёлые противокорабельные ракеты П-700 «Гранит» на крейсерах 1144 «Орлан». Максимальная дальность действия новейшей ПКР неизвестна - предположительно, она будет не менее 400 км.

Эта показывает, что Россия вплотную подходит к созданию реального гиперзвукового вооружения. Но США и Китай также «не сидят без дела». К сожалению, узнать много подробностей о реальном состоянии проектов и тактико-технических характеристиках этих изделий пока не представляется возможным. Но мы всё же попробуем собрать воедино имеющиеся факты и предположения и определить, каких успехов достигли страны в «гиперзвуке». Это очень важно, так как создание реальных образцов гиперзвукового сделает революцию в мире вооружений и может серьёзно повлиять на баланс сил в мире.

Перспективное гиперзвуковое вооружение России

О гиперзвуковой ПКР 3М22 «Циркон», которую разрабатывает корпорация «Тактическое ракетное вооружение», мы начали говорить выше. Её максимальная скорость будет превышать таковую у П-700 в 2−2,5 раза («Граниты» развивают скорость в 2,5М). Такая высокая скорость делает перехват ракеты крайне затруднительным, и, к тому же, сильно уменьшает время принятия решений противником - полёт «Циркона» на расстояние 400км должен длиться менее 4 минут. Предсказать, как долго продлятся испытания новой ПКР невозможно - слишком мало имеется информации, а сложность задачи очень высока. Вряд ли стоит ожидать создания реальной серийной ракеты раньше, чем к 2020 году, при этом высока вероятность того, что это произойдёт и сильно позже (да и основной носитель ракет - подлодки нового поколения «Хаски», вряд ли начнут приниматься на вооружение раньше конца 2020-х годов). Второй интересный российский проект - так называемое изделие 4202. Его разработку ведёт «НПО Машиностроения» с 2009 года. Речь идёт о создании гиперзвуковой, маневрирующей боеголовки для тяжёлых межконтинентальных баллистических ракет (а раз уж в 2016 начнутся испытания тяжёлой жидкостной ракеты РС-28 «Сармат», то ясно, что для неё новые боевые части и предназначены). Предположительно проводилось уже минимум 6 испытаний нового боевого блока, все с помощью МБР УР-100Н УТТХ (устаревшая тяжёлая жидкостная ракета, с которой уже сняты ядерные боеголовки - используется для испытаний, и для выведения спутников на орбиту). О последнем испытании писали западные СМИ, в том числе авторитетное агентство Jane’s. Из данных, приведённых в , известно, что боевая часть будет покрыта радиопоглощающим покрытием. Создание подобной боеголовки сделает существующие системы противоракетной обороны практически безоружными, так как боевая часть летит на огромной скорости, не по баллистической траектории, и совершает маневры. Помимо этого, за счёт того, что боевая часть управляема, возможно достижение очень большой точности поражения, по сравнению с классическими боеголовками, а это позволяет и вовсе применять оружие в неядерном оснащении, или же с маломощным ядерным зарядом.

И наконец, интерес представляет возможность создания стратегической крылатой ракеты - воздушного, или же морского базирования. Известно, что ещё в СССР началась разработка проекта Х-90 ГЭЛА (гиперзвуковой экспериментальный летательный аппарат), однако с распадом страны работы прекратились, а прототипы демонстрировались на авиасалоне МАКС в Жуковском. По задумке разработчиков скорость ракеты должна была достигать 4−5M, а максимальная дальность пуска - 3000 км. На данный момент предметной информации о разработке подобной ракеты не имеется, однако слухи и обрывочная информация об этом присутствует.

Гиперзвуковые проекты США

США также активно развивают гиперзвуковые технологии, не стесняясь при этом лишний раз показать, или рассказать о прошедших испытаниях, хотя технических деталей, естественно, американцы не раскрывают.

Из последних проектов стоит отметить прототип гиперзвуковой крылатой ракеты X-51 WaveRider. Испытания изделия начались в 2010 году. Из проведённых с борта стратегического бомбардировщика B-52H 4-х пусков, полностью успешным оказался один - самый последний (1 мая 2013 года). Ракета развила максимальную скорость в 5.1M (6100 км/ч) на высоте около 18 км, при этом полёт длился около 6 минут, было преодолено расстояние 426 км. В свободном доступе было опубликована и . Интересным был и предшественник X-51 - X-43A. Эта крылатая ракета установила рекорд скорости, развив 9,65М, однако двигатель ракеты работал всего 10−11 секунд.

Таким образом, США имеют серьёзный задел для создания реальной боевой крылатой ракеты. Насколько американцы к этому близки пока неясно - информация засекречена.

Другой проект, разрабатываемый в рамках инициативы «Глобальный молниеносный удар» (Prompt Global Strike) - это Advanced Hypersonic Weapon (AHW, «перспективное гиперзвуковое оружие»). Это перспективное вооружение обезоруживающего неядерного удара представляет из себя гиперзвуковую боевую часть, которая выводится с помощью ракеты носителя STARS IV (модификация списанной ракеты подводных лодок средней дальности UGM-27 Polaris) в верхние слои атмосферы, а потом на гиперзвуковой скорости «планирует» к цели. Американские оружейники рассчитывают таким образом поражать цели на расстояниях до 6000 км. По информации американских военных первое испытание AHW в 2011 году оказалось удачным - боевой блок пролетел 3700 км примерно за 30 минут и поразил цель. Второе испытание, прошедшее в 2014 году, оказалось провальным - боевой блок самоуничтожился на 4 секунде полёта.

Конкурентом программы AHW является Hypersonic Technology Vehicle 2 (HTV-2). Суть проекта такая же. На первых испытаний, которые проводились в 2010 году, к боевому блоку предъявлялись следующие требования: пролететь 7,700 км, развив скорость около 20M. HTV-2 был выведен в верхние слои атмосферы с помощью ракеты-носителя Minotaur IV (модификация списанных МБР LGM-118 Peacekeeper). Полёт должен был продлиться 30 минут, но на 9 минуте связь с боевым блоком была потеряна. Примерно по такому же сценарию развивались и вторые испытания в 2011 году - связь также была потеряна примерно на 9 минуте.

И последнее - 15 марта 2016 года американский оружейный гигант Lockheed Martin заявил о том, что ведутся работы над созданием гиперзвукового беспилотника SR-72. Скорость полёта летательного аппарата должна быть не меньше 6M. По мнению представителей компании, летательный аппарат может быть создан к середине 2020-х, а стоимость одной машины составит менее $1 миллиарда. Габариты беспилотника будут сходны с истребителем 5-ого поколения F-22, таким образом, можно предположить, что машина сможет выполнять разведывательные и, возможно, ударные задачи. Кстати, проект по созданию гиперзвукового самолёта HTV-3X в рамках программы Falcon (туда же входит и вышеописанный HTV-2), был заморожен в 2008 году из-за нехватки средств, однако теперь проект, по-видимому, оживает.

Другие страны, проводящие испытания гиперзвукового оружия

По информации американских источников (позже кратко подтверждённой Пекином), Китай также работает над созданием гиперзвуковой боевой части по типу изделия 4202 или HTV-2. Изделие, называемое американцами Wu-14, уже испытывалось 6 раз, и, судя по всему, 5 из испытаний были успешными, или частично успешными. Более точной и детальной информации о проекте пока нет, как и о технических характеристиках китайского гипезвукового планера.

Успехи есть и у другого азиатского гиганта - Индии. Там создана тактическая ракета «поверхность-поверхность» Shaurya, разгоняющаяся до скорости около 7M (примерно, как российская оперативно-тактическая ракета Искандер-М). Однако, включать в этот список тактические баллистические ракеты, наверное, не очень корректно. С другой стороны Индия ведёт совместную с Россией разработку ПКР Brahmos-2, которая, возможно, будет одной из модификаций вышеуказанного «Циркона».

Франция также разрабатывает гиперзвуковое оружие - начаты разработки крылатой ракеты «воздух-поверхность» ASN4G. Французы хотят разогнать этот носитель ядерного оружия до скорости около 8М, однако никаких сроков о том, когда будет готов первый прототип, пока не называлось.

Выводы

1. Гиперзвуковое оружие может серьёзно повлиять на установившийся стратегический баланс в мире. Оно до предела сокращает время реагирования для противника, а высокоточные, маневрирующие гиперзвуковые боевые части баллистических ракет могут проходить любые системы ПРО. Высокая точность и, вследствие этого, возможность отказа от ядерных боевых частей повышает «соблазн» использовать такое оружие с целью разоружить противника.

2. При нынешнем технологическом уровне создание реальных образцов гиперзвукового оружия перестаёт быть фантастикой. Особенно это касается гиперзвуковых боевых частей-планеров для МБР. Крылатые ракеты со скоростью полёта 5−6М тоже скоро могут стать реальностью.

3. Сомнительнее всего пока выглядят проекты гиперзвуковых самолётов - такие проекты слишком дороги на данном этапе. Так что «прокатиться» от Москвы до Нью-Йорка за час удастся, видимо, ещё нескоро.

4. Ни одна из сторон не имеет решающего преимущества в гиперзвуковой гонке. США наиболее открыто говорят о своих проектах (возможно не всех?), Россия, и, в большей мере, Китай - стараются пока полностью не раскрывать своих карт. Остальные же пока выступают в роли догоняющих.

По мере совершенствования технологий нового оружия становится все более актуальным вопрос о пересмотре мер военного сдерживания. Первые разработки гиперзвукового оружия активно испытываются Китаем, США и Англией, что заставляет и Россию включаться в эту и не без успехов. Отечественные конструкторы работают в двух основных областях, учитывая не только наступательный потенциал, которым обладает гиперзвуковое оружие, но и оборонительные средства. Серийное производство моделей данного типа в передовых странах, скорее всего, будет возможно примерно через 10 лет, но уже известно, что последние поколения ПРО не смогут противостоять подобной угрозе.

Особенности гиперзвукового оружия

Задачи, которые ставятся перед гиперзвуковым оружием, прежде возлагались на крылатые ракеты с базированием в воздухе. Испытания прототипов ГО показывают, что арсенал нового поколения на порядок превосходит все имеющиеся аналоги за счет высокой скорости. Вместе с этим гиперзвуковое оружие обладает повышенной точностью и эффективностью поражения. На практике это значит, что перехват ракеты сегодняшним потенциалом ПВО невозможен или, по крайней мере, затруднен.

Исходя из обозначенных преимуществ, можно утверждать, что создается и эффект внезапности - уничтожение цели происходит примерно за час после принятия соответствующего решения. Во всяком случае, такими характеристиками обладает передовое российское гиперзвуковое оружие, не позволяющее противнику успеть подготовиться к отражению удара. Если говорить о дальности поражения, то на текущий момент она ограничивается несколькими тысячами километров, но в скором будущем не исключено достижение объекта в любой точке мира.

Гиперзвуковая пушка

Одной из самых перспективных разработок России в этом классе является аэродинамическое гиперзвуковое оружие - электромагнитная пушка (или катапульта). Это масштабный проект пусковой авиаустановки, созданием которого занимается секретная организация. Тем не менее известно, что электромагнитной пушкой называется не что иное, как индукционный линейный мотор, разгоняющий самолеты до невероятных скоростей. Предполагается, что катапульта будет установлена на специальном авианосце водоизмещением порядка 80 тыс. т, строительство которого будет завершено в 2018 году.

На сегодняшний день прототипы аналогичного вооружения есть в Китае и США. Относительно Поднебесной эти данные пока не подтверждены, но Пентагон около 10 лет вел разработки в этом направлении и сегодня располагает установкой EMALS, предназначенной для авианосцев «Джеральд Форд».

Гиперзвуковые ракеты

Впервые о необходимости применения сверхвысоких скоростей на боеголовках заговорили еще в СССР, когда были попытки дополнить крылатыми сверхзвуковыми зарядами вместо ядерных. Продолжением этой концепции является новейшее гиперзвуковое оружие России в виде гиперзвукового летательного аппарата (ГЛА). Кроме небывалой скорости (свыше 5 тыс. м/с), система способна менять траекторию - именно неклассическая модель полета сделала аппарат единственным в своем роде. ГЛА способен в процессе движения входить в космос и возвращаться в слои атмосферы, что немыслимо даже для современных ракет.

Впрочем, и США не игнорируют подобные разработки. Другое дело, что по характеристикам и силовому потенциалу они заметно уступают отечественным системам. На текущий момент США имеют гиперзвуковое оружие этого класса в нескольких видах, среди которых прототипы Hyper-X и HySTR. Поскольку разработки секретны, информации о них мало, но известно, что некоторые из них создаются на платформе баллистических ракет стратегического вооружения, которые уже были сняты с производства.

Средства защиты

С одной стороны, практически все страны, ведущие разработки в направлении гиперзвукового оружия, ставили целью обеспечение безопасности от современных ПВО. Но с другой стороны, возникла и вполне очевидная необходимость в защите от аналогичных систем противника, ведь существующие оборонительные комплексы бесполезны перед ракетами, летающими на сверхвысоких скоростях.

Перспективным направлением в создании защиты нового поколения являются системы воздушно-космической обороны - на данный момент только их можно противопоставить возможностям, которыми располагает гиперзвуковое оружие. РФ в этом отношении имеет больше опыта, о чем свидетельствуют прототипы термобарического и электромагнитного оружия. Несмотря на это, готовых образцов или даже концепций, в соответствии с которыми можно было бы говорить о надежной защите от гиперзвукового оружия, пока нет. Единственной разработкой, которая теоретически может обеспечить оборонительную функцию с земли, является зенитно-ракетная система С-500, появление которой только ожидается.

Поражающий эффект

Хотя многие сравнивают силу поражения гиперзвуковым оружием с падением метеорита (во многом благодаря скорости заряда), боеголовки не имеют взрывоопасных веществ, поэтому детонация боекомплекта объекту противника не грозит. И все же гиперзвуковое оружие представляет серьезную опасность. Силовой потенциал, которым наделяется обычный металлический снаряд весом около 20 кг, в процессе запуска обретает невероятную Этому способствует электрический импульс, который возрастает по мере того, как боезаряд проходит между двумя рельсами пусковой установки. Огромные объемы энергии для стартового питания боеголовки и дальнейший вывод тепла от ствола орудия - то, что обеспечивает поражающую способность гиперзвукового оружия.

Двигатели для гиперзвуковых аппаратов

Основу, на которой разрабатывается наиболее перспективное гиперзвуковое оружие России, составляются все же для нового поколения. Существуют ракетно-прямоточные, турбопрямоточные и прямоточные силовые установки, которые позволяют сокращать массу техники, но в то же время сохранять высокий поражающий потенциал. Например, к прямоточным двигателям можно отнести устройства ГПВРД и СПВРД, которые разрабатывались еще с 1960-х годов и сегодня имеют оптимизированную систему работы на сверхвысоких скоростях.

Другие направления разработок

Идея гиперзвукового оружия находит места и в других нишах отечественного военно-производственного комплекса. Например, применение таких технологий допускается даже в создании бомбардировщиков. Так называемые волнолеты, как и ракеты, имеют необычные аэродинамические схемы, позволяющие выходить в космическое пространство и экономить топливо. Также представители оборонного сектора не раз упоминали, что Россия готовит новые маневрирующие боеголовки, напоминающие гиперзвуковое оружие США типа планера CAV FALCON.

Возможно, это усовершенствованные беспилотные самолеты, в которых будут установлены реактивные двигатели нового поколения. Так или иначе, диапазон направлений, в которых ведут работу отечественные инженеры, довольно обширен и в будущем должен обеспечить надежную защиту и эффективный наступательный потенциал.

Заключение

В современном понимании гиперзвуковое оружие получило известность благодаря США, когда была сформулирована концепция «глобального быстрого удара». В двухтысячных началась гонка вооружений, в последние годы проходит фаза испытаний первых прототипов гиперзвукового оружия. Россия в ней занимает если не первое, то одно из лидирующих мест.

К ее преимуществам относится не столько углубленное совершенствование имеющихся наработок в этом секторе, сколько возможности совмещения концепции гиперзвукового ракетного вооружения и средств воздушно-космической защиты. Вместе с этим осваиваются конструкции летательных аппаратов, испытываются альтернативные виды топлива, среди которых водород, совершенствуются снаряды и двигатели для гиперзвуковой военной техники.

Американские СМИ детально сравнили разработки Россия и США в области гиперзвукового вооружения. При этом журналисты признали, что России оказалась на шаг впереди

Американские эксперты сравнили перспективные разработки в области гиперзвукового вооружения, которые ведут Россия и США. Речь идет об оружии, способном достигать скорости выше Маха 5 (Мах 1 или 767 миль в час - это скорость распространения звука в воздушной среде на малой высоте при 20 градусах Цельсия).

Как отмечает The National Interest , такое вооружение в будущем может оказать серьезное влияние на стратегический баланс во всем мире. В качестве примера российского гиперзвукового оружия приводятся противокорабельная ракета "Циркон" и авиационная крылатая ракета Х-32. Уже появилась информация о том, что во время испытаний "Циркон" достиг скорости Маха 8, а дальность ее действия составляет не менее 400 километров. Ракета может поступить на вооружение в 2019-2020 годах, а в худшем случае, если работы затянуться - в середине 2020-х годов.


Зато X-32, разработанная специально для модернизированного бомбардировщика дальнего действия Ту-22М3М, уже находится на завершающей стадии испытаний. Издание относит ее к ракете пограничного класса между сверхзвуковым и гиперзвуковым из-за скорости Маха от 4 до 4,5. Но в качестве преимущества X-32 указывается ее способность пролетать большую часть расстояния на высоте от 40 до 45 километров, а затем обрушиваться на цель. Это позволяет уменьшить сопротивление воздуха и перегрев и избежать отказа электроники, что является основной проблемой сверхзвукового оружия.

Однако самым сложным и перспективным российским гиперзвуковым проектом The National Interest считает межконтинентальную баллистическую ракету РС-28 "Сармат". В отличие от обычной боеголовки, которая входит в атмосферу с гиперзвуковыми скоростями, она имеет возможность маневрировать в атмосфере и лететь по траектории, отличающейся от траекторий баллистических ракет. Издание признает, что перехватить "Сармат" практически невозможно. Кроме того, он может поражать цели с большей точностью, чем обычные боеголовки, а значит способен использовать неядерные заряды на межконтинентальных дистанциях. В публикации говорится, что работа над этим проектом, судя по всему, идет успешно, и даже с учетом возможных задержек в его реализации производство МБР "Сармат" может стартовать уже в начале или середине 2020-х годов.

В США гиперзвуковые проекты развивались в рамках инициативы Prompt Global Strike. При этом тестировались две конкурирующих разработки - Advanced HypersonicWeapon (AHW) и HypersonicTechnologyVehicle 2 (HTV-2). Из них лишь одно испытание AHW в 2011 году прошло успешно, хотя детальной информации о нем нет. Однако последний испытательный запуск в 2014 году оказался неудачным.

"Основной проблемой, с которой столкнулись разработчики, была потеря связи во время полета. По-видимому, это произошло из-за образования плазменного облака и последующего сбоя электроники. Решение этой проблемы является краеугольным камнем развития гиперзвуковой технологии в целом. Дальнейшая работа над HTV-2 не планируется. Что касается AHW, то нет никакой информации о том, будут ли проводится дальнейшие испытания", - говорится в публикации.

Также сообщается, что США сотрудничают с Австралией в рамках исследовательского проекта HIFiRE (Hypersonic International Flight Research Experimentation Program). Уже были проведены несколько запусков гиперзвуковых летательных аппаратов, и в июле 2017 года разработчикам удалось достичь скорости Маха 7,5. На другой гиперзвуковой проект Tactical Boost Glide (TBG), разрабатываемый на опыте HTV-2 и финансируемым DARPA (Агентством перспективных исследований обороны) уже потрачено 147 миллионов долларов.

The National Interest также обращает внимание на работы по созданию ракет X-43A и X-51 WaveRider, способных разогнаться до 9,65 и 5,1 Маха соответственно. В первом случае, правда, двигатель ракеты проработал только одиннадцать секунд, а во втором - около шести минут, что позволило преодолеть 426 километров. "Однако у X-51 даже не было системы управления и боеголовки, хотя обеспечение стабильной работы электроники на летательном аппарате с гиперзвуковой скоростью является одной из самых сложных задач", - пишет издание. Еще одним перспективным проектом является разработка гиперзвукового беспилотного разведывательного самолета SR-72, который должен достичь скорости Маха 6. Его появление запланировано на начало 2030-х годов.

Сравнивая возможности России и США по созданию гиперзвукового оружия, The National Interest также упоминает Китай. Но о его разработках пока мало что известно. Информация просочилась лишь о проекте DF-ZF. Этот аппарат был испытан семь раз, но результаты тестов остаются загадкой. По некоторым данным DZ-ZF сумел достичь скорости Маха 5-10.

"Для создания серийных моделей гиперзвукового оружия потребуются еще много лет упорной и дорогостоящей работы... В то же время, по имеющейся информации, Россия на один шаг ближе, чем другие, хотя разрыв с конкурентами минимален", - признает американское издание. При этом тот факт, что разработкой гиперзвукового оружия занимаются по меньшей мере три страны, автор публикации считает хорошими признаком, поскольку появление такого вооружения лишь у одного государства неизбежно приведет к нарушению существующего баланса сил.