Сила инерции равна. Техническая механика



Быть может, этот не совсем обычный вопрос вызовет недоумение у обывателя, плохо знакомого с основными постулатами классической механики. Выражения «инерция» и «по инерции» прочно закрепились в бытовом лексиконе, и, казалось бы, их суть понятна каждому. Но что это такое – инерция, и почему тела могут двигаться по инерции пояснить может далеко не каждый.

Давайте попробуем разобраться в этом вопросе с использованием основных постулатов механики и более-менее научных познаний об окружающем мире.

Сначала проведем виртуальные эксперименты, результаты которых может представить каждый.
Пусть перед нами на гладком горизонтальном полу покоится увесистый чугунный шар (например, большое пушечное ядро) и один из «экспериментаторов» пробует покатить его в любую сторону, упираясь ногами в пол и подталкивая руками.
Сначала нам придется приложить значительное усилие, чтобы сдвинуть шар с места, после чего он начнет уверенно катиться в выбранном вами направлении, и если мы перестанем его толкать, он так и будет катиться (силы трения и аэродинамического сопротивления для чистоты эксперимента оставим пока без виртуального внимания).

А теперь наоборот – попробуйте остановить этот шар, вцепившись в него руками и действуя ногами, как тормозом. Чувствуете сопротивление?.. Думаю, да.
При этом никто не будет отрицать, что чем массивнее шар, тем сложнее изменить его механическое состояние, т. е. сдвинуть с места или остановить.
Итак, вывод – сдвинуть с места неподвижный шар или остановить его при движении довольно непросто – необходимо приложить ощутимое усилие. С точки зрения механики в данном случае мы прикладываем усилие, чтобы преодолеть какую-то непонятную силу.

Посмотрим на наше ядро, покоящееся на полу, пристальнее. С точки зрения опять же классической механики к нему приложены лишь две силы – сила тяжести, притягивающая шар к центру нашей планеты, а также сила реакции пола, противодействующая силе тяжести, т. е. направленная противоположно ей.
Когда наш шар катится по гладкому полу с постоянной скоростью, него тоже действуют только две описанные выше силы – притяжения к Земле и реакция опорной поверхности. Обе эти силы друг друга уравновешивают, и шар находится в равновесном состоянии. А какая же сила препятствует попытке сдвинуть шар с места или остановить его во время прямолинейного и равномерного движения?
Думаю, что самые сообразительные уже догадались – конечно же, это и есть сила инерции.
Откуда же она взялась? Ведь, по сути, мы приложили к шару только одну силу, пытающуюся сдвинуть с места или остановить шар. Где пряталась до сих пор сила инерции и когда она «проснулась»?

Учебники по механике утверждают, что силы инерции, как таковой, в природе не существует. Понятие этой силы в научный обиход ввел француз Жан Лерон Даламбер (Д’Аламбер) в 1743 году, когда предложил использовать ее для уравновешивания тел, перемещающихся с ускорением. Метод назвали принципом Даламбера , и использовали его для преобразования задач динамики в задачи статики, тем самым упрощая их решение.
Но такое решение проблемы не объяснялось и даже вступало в противоречие другими постулатами механики, в частности, с законами, описанными несколько раньше великим англичанином – Исааком Ньютоном.

Когда в 1686 году И. Ньютон, опубликовал свой труд «Математические начала натуральной философии» и открыл человечеству глаза на основные законы механики, в том числе - закон, описывающий движение тел под действием какой-либо силы (F = ma ), он несколько расширил , как меры некоторого свойства материальных тел – инертности.
В соответствии с выводами гения всем окружающим нас материальным телам присуще некое свойство «лени» - они стремятся к вечному покою, пытаясь избавиться от ускоренного движения. Эту «лень» материальных тел Ньютон и назвал их инертностью.
Т. е инертность – это не сила, а некое свойство всех тел, образующих окружающий нас материальный мир, выражающееся в противодействии попыткам изменить их механическое состояние (придать какое-либо ускорение).
Впрочем, приписывать заслуги о пояснении природы инерции одному лишь Ньютону будет не совсем справедливо. Основополагающие выводы по этому вопросу были сделаны итальянцем Г. Галилеем и французом Р. Декартом, а И. Ньютон лишь обобщил их и использовал в описании законов механики.



В соответствии с размышлениями средневековых гениев, материальные тела (т. е. тела, обладающие массой) крайне неохотно позволяют изменить свое механическое состояние, соглашаясь на это лишь под действием внешней силы. При этом тот же Ньютон, описывая законы взаимодействия тел, утверждал, что силы в природе не появляются в одиночку – они, как результат взаимодействия двух тел, появляются только парами, причем обе силы такой пары равны по модулю и направлены вдоль одной прямой навстречу друг другу, т.е. попарно компенсируют друг друга.

Исходя из этого, в случае с чугунным шаром тоже должно быть две силы – усилие экспериментатора и противодействующая этому усилию сила, обусловленная упомянутым выше свойством инертности этого шара.
Но сила, по общим понятиям классической механики является результатом взаимодействия тел. И никакое свойство тела, в соответствии с этим постулатом, не может быть причиной появления какой-либо силы.

Противоречие с законами Ньютона привело к появлению в научной среде понятий инерциальной и неинерциальной систем отсчета .
Инерциальной стали называть систему отсчета, в которой все тела при отсутствии внешних воздействий находятся в состоянии покоя, а неинерциальной – все прочие системы отсчета, относительно которых тела перемещаются с ускорением. При этом в инерциальной системе отсчета описанные Ньютоном законы механики соблюдаются безусловно, а в неинерциальной не соблюдаются.
Однако все законы классической механики вполне можно применить и для неинерциальных систем отсчета, если наряду с реально действующими силами (нагрузками и реакциями) использовать силу инерции – виртуальную силу, обусловленную все тем же злополучным свойством инертности тел.

Таким образом удалось избавиться от противоречия, вытекающего из природы возникновения сил, описанной Ньютоном, и добиться условного равновесия тел при любом ускоренном движении, используя принцип Даламбера.
Сила инерции получила право на существование, и физики стали изучать ее более пристально, без опаски быть высмеянными коллегами.

Возникновение сил инерции напрямую связано с ускорением тела – в состоянии покоя (неподвижность или прямолинейное равномерное движение тела) эти силы не возникают и проявляются только в неинерциальных системах отсчета. При этом величина силы инерции равна по модулю и противоположно направлена силе, вызывающей ускорение тела, поэтому они взаимно уравновешивают друг друга.

В реальном мире на любое тело действуют силы инерции, т. е. понятие инерциальной системы отсчета является абстрактным. Но во многих практических ситуациях можно условно принять систему отсчета инерциальной, что позволяет упростить решение задач, связанных с механическим движением материальных тел.

Связь между инерцией и гравитацией

Еще Г. Галилей указал на некоторую связь между понятиями инерции и гравитации.

Силы инерции, действующие на тела в неинерциальной системе отсчета, пропорциональны их массам и при прочих равных условиях сообщают этим телам одинаковые ускорения. Поэтому при одинаковых условиях в «поле сил инерции» эти тела движутся совершенно одинаково. И таким же свойством обладают тела, находящиеся под действием сил поля тяготения.


По этой причине в некоторых условиях силы инерции ассоциируются с силами тяготения. Например, движение тел в равноускоренном лифте происходит точно так же, как и в неподвижном лифте, висящем в однородном поле тяжести. Никакой эксперимент, выполненный внутри лифта, не может отделить однородное поле тяготения от однородного поля сил инерции.

Аналогия между силами тяготения и силами инерции лежит в основе принципа эквивалентности гравитационных сил и сил инерции (принципа эквивалентности Эйнштейна): все физические явления в поле тяготения происходят совершенно так же, как и в соответствующем поле сил инерции, если напряженности обоих полей в соответствующих точках пространства совпадают, а прочие начальные условия для рассматриваемых тел одинаковы.
Этот принцип положен в основу общей теории относительности.

Какими бывают силы инерции?

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил:

  • силы инерции при ускоренном поступательном движении системы отсчета (обусловлены поступательным ускорением);
  • силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета (обусловлены центробежным ускорением);
  • силы инерции, действующие на тело, движущееся во вращающейся системе отсчета (обусловлены поступательным и центробежным ускорениями, а также ускорением Кориолиса);.

Кстати, термин «инерция» имеет латинское происхождение - слово «inertia » означает бездеятельность.



Для того чтобы второй закон Ньютона выполнялся в неинерциальных системах отсчета в дополнение к силам, которые действуют на тела вводят силы инерции.

Определение и формула силы инерции

ОПРЕДЕЛЕНИЕ

Силой инерции называют силу, которая вводится только потому, что система координат, в которой происходит рассмотрение движения тел, является неинерциальной.

Возникновение сил инерции не связано с действием каких-либо тел. Напомним, что неинерциальными системами отсчета являются любые системы, движущейся с ускорением относительно инерциальных систем.

Третий закон Ньютона для сил инерции не выполняется.

Пусть ускорение тела относительно инерциальной системы отсчета равно . Обычно такое ускорение называют абсолютным, при этом ускорение тела относительно неинерциальной системы отсчета носит название относительного (). Второй закон Ньютона для инерциальной системы отсчета запишем как:

где - равнодействующая сила, приложенная к телу массы m. В неинерциальной системе отсчета:

поскольку:

Добавим к правой части выражения (2) силы инерции, так чтобы выполнялся второй закон Ньютона в неинерциальной системе отсчета:

В таком случае получим, что сила инерции равна:

Формула (5) для силы инерции дает верное описание движения в неинерциальной системе отсчета. При этом нахождение разности относительного и абсолютного ускорений является кинематической задачей. Ее можно решить, если известен характер движения неинерциальной системы отсчета относительно инерциальной.

Системы отсчета, движущиеся прямолинейно с постоянным ускорением

Система отсчета, которая перемещается прямолинейно с постоянным ускорением - это простейший случай неинерциальной системы. Рассмотрим неинерциальную систему отсчета, которая движется прямолинейно с постоянным ускорением (переносное ускорение) относительно инерциальной системы отсчета. Тогда:

Согласно формуле (5) сила инерции равна:

Вращающаяся система отсчета

Рассмотрим систему отсчета, вращающуюся относительно неподвижной оси с постоянной скоростью . Для тела находящегося в состоянии покоя в такой системе отсчета формулу для силы инерции можно записать как:

где - радиус-вектор, по величине равный расстоянию от оси вращения до рассматриваемого тела, направленный от центра к телу. Сила инерции (8) называется центробежной силой инерции.

Все тела на поверхности Земли испытывают действие центробежной силы инерции.

Отметим, что всякую задачу можно решить в инерциальной системе отсчета. Применение неинерциальных систем продиктовано соображениями удобства применения неинерциальных систем.

Примеры решения задач по теме «Сила инерции»

ПРИМЕР 1

Задание Какова сила нормального давления тела (вес) на поверхность Земли, если тело неподвижно, имеет массу m. Находится на широте . Радиус Земли считать равным R.
Решение Сделаем рисунок.

Свяжем систему отсчета с Землей. На груз в этой системе отсчета действуют силы: сила тяжести (); сила реакции опоры (); сила трения покоя (). Кроме этих сил, так как систему отсчета связанную с Землей в нашем случае инерциальной считать не будем, действует центробежная сила инерции (). Формулу для расчета силы инерции возьмем:

где радиус траектории (окружности) по которой движется груз.

Систему координат выберем так, что ее начало совпадет с центром тела, ось Y будет перпендикулярна поверхности Земли, ось X - касательная к поверхности Земли (см. рис.1). Так как тело не движется относительно Земли, то второй закон Ньютона запишем как:

В проекциях на оси X и Y выражения (1.2), учитывая (1.1) имеем:

Так как вес тела (P) по величине равен (N), выразим его из первого уравнения системы (1.3), получим:

Ответ

В классической механике представления о силах и их свойствах основываются на законах Ньютона и неразрывно связаны с понятием инерциальная система отсчёта .

Действительно, физическая величина, называемая силой, вводится в рассмотрение вторым законом Ньютона, при этом сам закон формулируется только для инерциальных систем отсчёта. Соответственно, понятие силы первоначально оказывается определённым только для таких систем отсчёта.

Уравнение второго закона Ньютона, связывающее ускорение имассу материальной точки с действующей на неё силой , записывается в виде

Из уравнения непосредственно следует, что причиной ускорения тел являются только силы, и наоборот: действие на тело не скомпенсированных сил обязательно вызывает его ускорение.

Третий закон Ньютона дополняет и развивает сказанное о силах во втором законе.

сила есть мера механического действия на данное материальное тело других тел

в соответствии с третьим законом Ньютона силы способны существовать лишь попарно, при этом природа сил в каждой такой паре одинакова.

любая сила, действующая на тело, имеет источник происхождения в виде другого тела. Иначе говоря, силы обязательно представляют собой результат взаимодействия тел.

Никакие другие силы в механике в рассмотрение не вводятся и не используются. Возможность существования сил, возникших самостоятельно, без взаимодействующих тел, механикой не допускается.

Хотя в наименованиях эйлеровых и даламберовых сил инерции содержится слово сила , эти физические величины силами в смысле, принятом в механике, не являются.

34. Понятие о плоскопараллельном движении твердого тела

Движение твердого тела называется плоскопараллельным, если все точки тела перемещаются в плоскостях, параллельных некоторой фиксированной плоскости (основной плоскости). Пусть некоторое тело V совершает плоское движение, π - основная плоскость. Из определения плоскопараллельного движения и свойств абсолютно твердого тела следует, что любой отрезок прямой АВ, перпендикулярный плоскости π, будет совершать поступательное движение. То есть траектории, скорости и ускорения всех точек отрезка АВ будут одинаковы. Таким образом, движение каждой точки сечения s параллельного плоскости π, определяет собой движение всех точек тела V, лежащих на отрезке перпендикулярном сечению в данной точке. Примерами плоскопараллельного движения являются: качение колеса по прямолинейному отрезку, так как все его точки перемещаются в плоскостях, параллельных плоскости, перпендикулярной оси колеса; частным случаем такого движения является вращение твердого тела вокруг неподвижной оси , в самом деле, все точки вращающегося тела движутся в плоскостях параллельных некоторой перпендикулярной оси вращения неподвижной плоскости.

35. Силы инерции при прямолинейном и криволинейном движении материальной точки

Сила, с которой точка сопротивляется изменению движения, называется силой инерции материальной точки. Сила инерции направлена противоположно ускорению точки и равна массе, умно­женной на ускорение.

При прямолинейном движении направление ускорения совпадает с траекторией. Сила инерции направлена в сторону, противоположную ускорению, и численное значение ее определяется по формуле:

При ускоренном движении направления ускорения и скорости совпадают и сила инерции направлена в сторону, противоположную движению. При замедленном движении, когда ускорение направлено в сторону, обратную скорости, сила инерции действует по направлению движения.

При криволинейном и неравномерном движении ускорение может быть разложено на нормальную аn и касательную at составляющие. Аналогично сила инерции точки также складывается из двух составляющих: нормальной и касательной.

Нормальная составляющая силы инерции равна произведению массы точки на нормальное ускорение и направлена противоположно этому ускорению:

Касательная составляющая силы инерции равна произведению массы точки на касательное ускорение и направлена противоположно этому ускорению:

Очевидно, что полная сила инерции точки М равна геометрической сумме нормальной и касательной составляющих, т. е.

Учитывая, что касательная и нормальная составляющие взаимно перпендикулярны, полная сила инерции.

Неинерциальной системой отсчёта называется система, движущаяся ускоренно относительно инерциальной.

Законы Ньютона справедливы только в инерциальных системах отсчета. Поэтому все рассматриваемые до сих пор вопросы относились к инерциальным системам. Однако на практике часто приходится иметь дело с неинерциальными системами отсчёта. Выясним, как должен записываться основной закон динамики в таких системах. Рассмотрим в начале движение материальной точки в инерциальной системе отсчёта:

Введём кроме неё неинерциальную систему отсчёта и договоримся первую называть неподвижной, а вторую подвижной:

На основании теоремы сложения ускорений:

Отсюда перепишем:

Мы видим, что в неинерциальной системе отсчёта ускорение точки определяется не только силой и массойm , но и характером движения самой подвижной системы отсчёта.

–фиктивные силы (они не обусловлены взаимодействием тел, а связаны с ускоренным движением неинерциальной системы относительно инерциальной) или силы инерции.

В инерциальных системах отсчёта единственной причиной ускоренного движения материальной точки являются силы, действующие со стороны материальных тел. В неинерциальных системах причиной ускоренного движения являются и силы инерции, не связанные ни с каким взаимодействием.

Необходимо подчеркнуть, что на точку, находящуюся в подвижной системе координат, силы инерции оказывают реальное действие, так как они входят в уравнение движения. Пример: движение человека в вагоне, при движении вагона с постоянной скоростью.

,

.

Пусть теперь вагон замедляет свой ход:

.

Таким образом, введение сил инерции приводит к удобной формулировке основных законов механики в относительном движении и придаёт им некоторую наглядность.

Рассмотрим два частных случая.

Пусть материальная точка совершает равномерное прямолинейное движение относительно движущейся системы координат, тогда с учетом
получим:

.

Таким образом, реальные силы уравновешиваются силами инерции.

Пусть материальная точка находится в покое по отношению к подвижной системе координат:

Тогда
,

Как уже отмечалось, законы Ньютона выполняются только в инерциальных системах отсчета. Системы отсчета, движущиеся относительно инерциальной системы с ускорением, называются н еинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже несправедливы. Однако законы динамики можно применять и для них, если кроме сил, обусловленных воздействием тел друг на друга, ввести в рассмотрение силы особого рода – так называемые силы инерции.

Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции). Силы инерции при этом должны быть такими, чтобы вместе с силами , обусловленными воздействием тел друг на друга, они сообщали телу ускорение , каким оно обладает в неинерциальных системах отсчета, т. е.

(1)

Так как
( – ускорение тела в инерциальной системе отсчета), то

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил:

1) силы инерции при ускоренном поступательном движении системы отсчета;

2) силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета;

3) силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.

Рассмотрим эти случаи.

1. Силы инерции при ускоренном поступательном движение системы отсчета. Пусть на тележке к штативу на нити подвешен шарик массой т . Пока тележка покоится или движется равномерно и прямолинейно, нить, удерживающая шарик, занимает вертикальное положение и сила тяжести
уравновешивается силой реакции нити .

Если тележку привести в поступательное движение с ускорением , то нить начнет отклоняться от вертикали назад до такого угла α , пока результирующая сила
не обеспечит ускорение шарика, равное . Таким образом, результирующая сила направлена в сторону ускорения тележки и для установившегося движения шарика (шарик теперь движется вместе с тележкой с ускорением ) равна
, откуда
,т. е. угол отклонения нити от вертикали тем больше, чем больше ускорение тележки.

Относительно системы отсчета, связанной с ускоренно движущейся тележкой, шарик покоится, что возможно, если сила , которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Таким образом,

(2)

Проявление сил инерции при поступательном движении наблюдается в повседневных явлениях. Например, когда поезд набирает скорость, то пассажир, сидящий по ходу поезда, под действием силы инерции прижимается к спинке сиденья. Наоборот, при торможении поезда сила инерции направлена в противоположную сторону, и пассажир удаляется от спинки сиденья. Особенно эти силы заметны при внезапном торможении поезда. Силы инерции проявляются в перегрузках, которые возникают при запуске и торможении космических кораблей.

2. Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета. Пусть диск равномерно вращается с угловой скоростью ω (ω =const ) вокруг вертикальной оси, проходящей через его центр. На диске, на разных расстояниях от оси вращения, установлены маятники (на нитях подвешены шарики массой m ). При вращении маятников вместе с диском шарики отклоняются от вертикали на некоторый угол.

В инерциальной системе отсчета, связанной, например, с помещением, где установлен диск, шарик равномерно вращается по окружности радиусом R (расстояние от центра вращающегося шарика до оси вращения). Следовательно, на него действует сила, модуль которой равен F = 2 R и направлена сила перпендикулярно оси вращения диска. Она является равнодействующей силы тяжести
и силы натяжения нити :
. Когда движение шарика установится, то
, откуда
,т. е. углы отклонения нитей маятников будут тем больше, чем больше расстояние R от центра шарика до оси вращения диска и чем больше угловая скорость вращения ω .

Относительно системы отсчета, связанной с вращающимся диском, шарик покоится, что возможно, если сила уравновешивается равной и противоположно направленной ей силой , которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Сила , называемая центробежной силой инерции , направлена по горизонтали от оси вращения диска и её модуль равен

F ц = 2 R (3)

Действию центробежных сил инерции подвергаются, например, пассажиры в движущемся транспорте на поворотах, летчики при выполнении фигур высшего пилотажа; центробежные силы инерции используются во всех центробежных механизмах: насосах, сепараторах и т. д., где они достигают огромных значений. При проектировании быстро вращающихся деталей машин (роторов, винтов самолетов и т. д.) принимаются специальные меры для уравновешивания центробежных сил инерции.

Из формулы (3) вытекает, что центробежная сила инерции, действующая на тела во вращающихся системах отсчета в направлении радиуса от оси вращения, зависит от угловой скорости вращения ω системы отсчета и радиуса R , но не зависит от скорости тел относительно вращающихся систем отсчета. Следовательно, центробежная сила инерции действует во вращающихся системах отсчета на все тела, удаленные от оси вращения на конечное расстояние, независимо от того, покоятся ли они в этой системе (как мы предполагали до сих пор) или движутся относительно нее с какой-то скоростью.

3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета. Пусть шарик массой т движется с постоянной скоростью вдоль радиуса равномерно вращающегося диска (). Если диск не вращается, то шарик, направленный вдоль радиуса, движется по радиальной прямой и попадает в точку А, если же диск привести во вращение в направлении, указанном стрелкой, то шарик катится по кривой ОВ , причем его скорость относительно диска изменяет свое направление. Это возможно лишь тогда, если на шарик действует сила, перпендикулярная скорости .

Для того чтобы заставить шарик катиться по вращающемуся диску вдоль радиуса, используем жестко укрепленный вдоль радиуса диска стержень, на котором шарик движется без трения равномерно и прямолинейно со скоростью .

При отклонении шарика стержень действует на него с некоторой силой . Относительно диска (вращающейся системы отсчета) шарик движется равномерно и прямолинейно, что можно объяснить тем, что сила уравновешивается приложенной к шарику силой инерции , перпендикулярной скорости . Эта сила называется кориолисовой силой инерции .

Можно показать, что сила Кориолиса

(4)

Вектор перпендикулярен векторам скорости тела и угловой скорости вращения системы отсчета в соответствии с правилом правого винта.

Сила Кориолиса действует только на тела, движущиеся относительно вращающейся системы отсчета, например, относительно Земли. Поэтому действием этих сил объясняется ряд наблюдаемых на Земле явлений. Так, если тело движется в северном полушарии на север, то действующая на него сила Кориолиса, как это следует из выражения (4), будет направлена вправо по отношению к направлению движения, т. е. тело несколько отклонится на восток. Если тело движется на юг, то сила Кориолиса также действует вправо, если смотреть по направлению движения, т. е. тело отклонится на запад. Поэтому в северном полушарии наблюдается более сильное подмывание правых берегов рек; правые рельсы железнодорожных путей по движению изнашиваются быстрее, чем левые, и т. д. Аналогично можно показать, что в южном полушарии сила Кориолиса, действующая на движущиеся тела, будет направлена влево по отношению к направлению движения.

Благодаря силе Кориолиса падающие на поверхность Земли тела отклоняются к востоку (на широте 60° это отклонение должно составлять 1 см при падении с высоты 100 м). С силой Кориолиса связано поведение маятника Фуко, явившееся в свое время одним из доказательств вращения Земли. Если бы этой силы не было, то плоскость колебаний качающегося вблизи поверхности Земли маятника оставалась бы неизменной (относительно Земли). Действие же сил Кориолиса приводит к вращению плоскости колебаний вокруг вертикального направления.

,

где силы инерции задаются формулами (2) – (4).

Обратим еще раз внимание на то, что силы инерции вызываются не взаимодействием тел, а ускоренным движением системы отсчета . Поэтому они не подчиняются третьему закону Ньютона, так как если на какое-либо тело действует сила инерции, то не существует противодействующей силы, приложенной к данному телу. Два основных положения механики, согласно которым ускорение всегда вызывается силой, а сила всегда обусловлена взаимодействием между телами, в системах отсчета, движущихся с ускорением, одновременно не выполняются.

Для любого из тел, находящихся в неинерциальной системе отсчета, силы инерции являются внешними; следовательно, здесь нет замкнутых систем. Это означает, что в неинерциальных системах отсчета не выполняются законы сохранения импульса, энергии и момента импульса. Таким образом, силы инерции действуют только в неинерциальных системах. В инерциальных системах отсчета таких сил не существует.

Возникает вопрос о «реальности» или «фиктивности» сил инерции. В ньютоновской механике, согласно которой сила есть результат взаимодействия тел, на силы инерции можно смотреть как на «фиктивные», «исчезающие» в инерциальных системах отсчета. Однако возможна и другая их интерпретация. Так как взаимодействия тел осуществляются посредством силовых полей, то силы инерции рассматриваются как воздействия, которым подвергаются тела со стороны каких-то реальных силовых полей, и тогда их можно считать «реальными». Независимо от того, рассматриваются ли силы инерции в качестве «фиктивных» или «реальных», многие явления, о которых упоминалось выше, объясняются с помощью сил инерции.

Силы инерции, действующие на тела в неинерциальной системе отсчета, пропорциональны их массам и при прочих равных условиях сообщают этим телам одинаковые ускорения. Поэтому в «поле сил инерции» эти тела движутся совершенно одинаково, если только одинаковы начальные условия. Тем же свойством обладают тела, находящиеся под действием сил поля тяготения.

При некоторых условиях силы инерции и силы тяготения невозможно различить. Например, движение тел в равноускоренном лифте происходит точно так же, как и в неподвижном лифте, висящем в однородном поле тяжести. Никакой эксперимент, выполненный внутри лифта, не может отделить однородное поле тяготения от однородного поля сил инерции.

Аналогия между силами тяготения и силами инерции лежит в основе принципа эквивалентности гравитационных сил и сил инерции (принципа эквивалентности Эйнштейна): все физические явления в поле тяготения происходят совершенно так же, как и в соответствующем поле сил инерции, если напряженности обоих полей в соответствующих точках пространства совпадают, а прочие начальные условия для рассматриваемых тел одинаковы. Этот принцип является основой общей теории относительности.

Из повседневного опыта мы можем подтвердить следующее умозаключение: скорость и направление движения тела могут меняться лишь во время его взаимодействия с другим телом. Это порождает явление инерции, о котором мы и поговорим в этой статье.

Что такое инерция? Пример жизненных наблюдений

Рассмотрим случаи, когда какое-нибудь тело на начальном этапе эксперимента уже пребывает в движении. Позже мы увидим, что уменьшение скорости и остановка тела не могут происходить самовольно, ведь причиной тому является действие на него другого тела.

Вы, наверное, не единожды наблюдали, как пассажиры, которые едут в транспорте, вдруг наклоняются вперед во время торможения или прижимаются на бок на крутом повороте. Почему? Объясним далее. Когда, к примеру, спортсмены пробегают определенную дистанцию, они пытаются развить максимальную скорость. Пробежав финишную черту, уже можно и не бежать, однако нельзя резко остановиться, а поэтому спортсмен пробегает еще несколько метров, то есть совершает движение по инерции.

Из вышеперечисленных примеров можно сделать вывод, что все тела имеют особенность сохранять скорость и направление движения, не будучи в состоянии при этом мгновенно их изменить впоследствии действия иного тела. Можно предположить, что при отсутствии внешнего действия тело сохранит и скорость, и направление движения как угодно долго. Итак, что такое инерция? Это явление сохранения скорости движения тела при отсутствии воздействия на него других тел.

Открытие инерции

Такое свойство тел открыл итальянский ученый Галилео Галилей. На основе своих экспериментов и рассуждений он утверждал: ежели тело не взаимодействует с иными телами, то оно либо пребывает в состоянии спокойствия, либо движется прямолинейно и равномерно. Его открытия вошли в науку как Закон инерции, однако более детально сформулировал его Рене Декарт, а уж Исаак Ньютон внедрил в свою систему законов.

Интересный факт: инерция, определение которой привел нам Галилей, рассматривалась еще в Древней Греции Аристотелем, но из-за недостаточного развития науки, точной формулировки приведено не было. гласит: существуют такие
системы отсчета, относительно которых тело, которое движется поступательно, сохраняет свою скорость постоянной, если на него не действуют иные тела. Формула инерции в едином и обобщенном виде отсутствует, но ниже мы приведем множество иных формул, раскрывающих ее особенности.

Инертность тел

Все мы знаем, что автомобиля, поезда, корабля или других тел увеличивается постепенно, когда они начинают двигаться. Все вы видели запуск ракет по телевизору или взлет самолетов в аэропорту - они увеличивают скорость не рывками, а постепенно. Наблюдения, а также повседневная практика говорят о том, что все тела имеют общую особенность: скорость движения тел в процессе их взаимодействия меняется постепенно, а поэтому для их изменения необходимо некоторое время. Эта особенность тел получила название инертности.

Все тела инертны, но не у всех инертность одинакова. Из двух взаимодействующих тел она будет выше у того, которое обретет меньшее ускорение. Так, к примеру, при выстреле ружье приобретает меньшее ускорение, чем патрон. При взаимном отталкивании взрослого конькобежца и ребенка взрослый получает меньшее ускорение, чем ребенок. Это свидетельствует о том, что инертность взрослого человека больше.

Для характеристики инертности тел ввели особенную величину - массу тела, ее принято обозначать буквой m . Дабы иметь возможность сравнивать массы различных тел, массу кого-нибудь из них необходимо учесть за единицу. Ее выбор может быть произвольным, однако она должна быть удобной для практического употребления. В системе СИ за единицу взяли массу специального эталона, изготовленного из твердого сплава платины и иридия. Она носит всем нам известное название - килограмм. Следует отметить, что инерция твердого тела бывает 2-х видов: поступательная и вращательная. В первом случае мерой инерции является масса, во втором - момент инерции, о котором мы поговорим позже.

Момент инерции

Так называют скалярную физическую величину. В системе СИ единицей измерения момента инерции является кг*м 2 . Обобщенная формула следующая:

Здесь m i - это масса точек тела, r i - это расстояние от точек тела до оси z в пространственной системе координат. В словесной интерпретации можно сказать так: момент инерции определяется суммой произведений элементарных масс, умноженных на квадрат расстояния до базового множества.

Есть и другая формула, характеризующая определение момента инерции:

Здесь dm - масса элемента, r - расстояние от элемента dm до оси z . Словесно можно сформулировать так: момент инерции системы материальных точек или тела относительно полюса (точки) - это алгебраическая сумма произведения масс материальных точек, составляющих тело, на квадрат расстояния их до полюса 0.

Стоит упомянуть, что существует 2 вида моментов инерции - осевые и центробежные. Есть также такое понятие, как главные моменты инерции (ГМИ) (относительно главных осей). Как правило, они всегда различны между собой. Ныне можно рассчитать моменты инерции для многих тел (цилиндра, диска, шара, конуса, сферы и проч.), однако не будем углубляться в уточнение всех формул.

Системы отсчета

В 1-ом законе Ньютона шла речь о равномерном прямолинейном движении, которое можно рассматривать только в определенной системе отсчета. Даже приближенный анализ механических явлений показывает, что закон инерции выполняется далеко не во всех системах отсчета.

Рассмотрим простой эксперимент: положим мяч на горизонтальный столик в вагоне и понаблюдаем за его движением. Если поезд будет находиться в состоянии спокойствия относительно Земли, то и мяч сохранит спокойствие до тех пор, пока мы не подействуем на него иным телом (например, рукой). Следовательно, в системе отсчета, что связана с Землей, закон инерции выполняется.

Представим, что поезд будет ехать относительно Земли равномерно и прямолинейно. Тогда в системе отсчета, что связана с поездом, мяч сохранит состояние спокойствия, а в той, что связана с Землей, - состояние равномерного и прямолинейного движения. Следовательно, закон инерции выполняется не только в системе отсчета, связанной с Землей, но и во всех других, движущихся относительно Земли равномерно и прямолинейно.

Теперь представим, что поезд быстро набирает скорость либо круто поворачивает (во всех случаях он движется с ускорением относительно Земли). Тогда, как и раньше, мяч сохраняет равномерное и которое он имел до начала ускорения поезда. Однако относительно поезда мяч сам по себе выходит из состояния спокойствия, хотя и нет тел, которые бы выводили его из него. Это значит, что в системе отсчета, связанной с ускорением движения поезда относительно Земли, закон инерции нарушается.

Итак, системы отсчета, в которых выполняется закон инерции, получили название инерциальных. А те, в которых не выполняется, - неинерциальных. Определить их просто: если тело движется равномерно и прямолинейно (в отдельных случаях - это спокойствие), то система инерциальная; если движение неравномерное - неинерциальная.

Сила инерции

Это довольно многозначное понятие, а поэтому попытаемся как можно более детально его рассмотреть. Приведем пример. Вы спокойно стоите в автобусе. Внезапно он начинает двигаться, а значит, набирает ускорение. Вы мимо воли отклонитесь назад. Но почему? Кто вас потянул? С точки зрения наблюдателя на Земле вы остаетесь на месте, при этом выполняется 1-ый закон Ньютона. С точки зрения наблюдателя в самом автобусе, вы начинаете двигаться назад, будто под какой-либо силой. На самом деле ваши ноги, которые связаны силами трения с полом автобуса, поехали вперед вместе с ним, а вам,
теряя равновесие, пришлось падать назад. Таким образом, для описания движения тела в неинерциальной системе отсчета необходимо вводить и учитывать дополнительные силы, что действуют со стороны связей тела с такой системой. Эти силы и есть силы инерции.

Необходимо учесть, что они фиктивны, ибо нет ни единого тела либо поля, под действием которого вы начали двигаться в автобусе. Законы Ньютона на силы инерции не распространяются, однако их использование наряду с "настоящими" силами позволяет описывать движение у произвольных неинерциальных систем отсчета при помощи различных инструментов. В этом состоит весь смысл ввода сил инерции.

Итак, теперь вы знаете, что такое инерция, момент инерции и инерциальные системы, силы инерции. Двигаемся далее.

Поступательное движение систем

Пусть на некое тело, находящееся в неинерциальной системе отсчета, движущееся с ускорением а 0 относительно инерциальной, действует сила F. Для такой неинерциальной системы уравнение-аналог второго закона Ньютона имеет вид:

Где а 0 - это ускорение тела с массой m , что вызвано действием силы F относительно неинерциальной системы отсчета; F ін - сила инерции. Сила F в правой части является «настоящей» в том понимании, что это результирующая взаимодействия тел, зависящая только от разности координат и скоростей взаимодействующих материальных точек, которые не меняются при переходе от одной системы отсчета к другой, движущейся поступательно. Поэтому не меняется и сила F. Она инвариантна относительно такого перехода. А вот F ін возникает не по причине а из-за ускоренного движения системы отсчета, из-за чего она меняется при переходе к другой ускоренной системе, поэтому не является инвариантной.

Центробежная сила инерции

Рассмотрим поведение тел в неинерциальной системе отсчета. XOY вращается относительно инерциальной системы, коей будем считать Землю, с постоянной угловой скоростью ω. Примером может послужить система на рисунке ниже.

Выше изображен диск, где закреплен радиально направленный стержень, а также надет синий шарик, "привязанный" к оси диска эластичной веревкой. Пока диск не вращается, веревка не деформируется. Однако при раскручивании диска шарик понемногу растягивает веревку до тех пор, пока сила упругости F ср не станет такой, что равна произведению массы шарика m на ее нормальное ускорение a п = -ω 2 R, то есть F ср = -mω 2 R , где R - это радиус круга, который описывает шарик при вращении вокруг системы.

Ежели угловая скорость ω диска останется постоянной, то и шарик прекратит движение относительно оси OX. В этом случае относительно системы отсчета XOY, которая связана с диском, шарик будет находиться в состоянии спокойствия. Это объяснится тем, что в этой системе, помимо силы F ср, на шарик действует сила инерции F cf , которая направлена вдоль радиуса от оси вращения диска. Сила, имеющая вид, как в формуле, представленной ниже, называется инерции. Возникать она может только во вращающихся системах отсчета.

Сила Кориолиса

Оказывается, когда тела двигаются относительно вращающихся систем отсчета, на них, помимо центробежной силы инерции, действует еще одна сила - Кориолиса. Она всегда перпендикулярна к вектору скорости тела V, а это означает, что она не выполняет никакой работы над этим телом. Подчеркнем, что сила Кориолиса проявляет себя лишь тогда, когда тело движется относительно неинерциальной системы отсчета, которая осуществляет вращение. Ее формула выглядит следующим образом:

Поскольку выражение (v*ω) является векторным произведением приведенных в скобках векторов, то можно прийти к выводу, что направление силы Кориолиса определяется правилом буравчика по отношению к ним. Ее модуль равен:

Здесь Ө - это угол между векторами v и ω .

В заключение

Инерция - это удивительное явление, которое ежедневно преследует каждого человека сотни раз, пусть мы и сами не замечаем этого. Думаем, что статья дала вам важные ответы на вопросы о том, что такое инерция, что такое сила и моменты инерции, кто открыл явление инерции. Уверены, вам было интересно.