Самые известные кометы солнечной системы для детей. Малые тела солнечной системы

Кометы

Первым стал исследовать кометы датский астроном Тихо Браге, а затем его ученик, немецкий ученый И. Кеплер. Первым, кто предположил, что кометы – члены Солнечной системы, был Э. Галлей (1656-1742), он первым доказал периодичность движения комет. Общее число комет в Солнечной системе более десятков миллиардов, т.е. она окружена облаками комет, ежегодно наблюдается 15-20 комет (рис. 45).

Рис. 45. Комета Хейла-Боппа

Кометы – малые тела Солнечной системы, обычно размером в несколько километров, состоящие главным образом из летучих веществ (льдов). Их орбиты имеют большой эксцентриситет, как правило, с перигелием в пределах орбит внутренних планет и афелием далеко за Плутоном. Когда комета входит во внутреннюю область Солнечной системы и приближается к Солнцу, ее ледяная поверхность начинает испаряться и ионизироваться, создавая кому: длинное облако из газа и пыли, часто видимое невооруженным глазом. Газы захватывают пыль и вместе с ней образуют голову кометы и хвост, достигающий сотен миллионов километров. Иногда образуется несколько хвостов. Потоки электрических частиц, исходящих от Солнца, вызывают свечение разряженного газа в хвостах комет.

Короткопериодические кометы имеют период меньше 200 лет. Период же долгопериодических комет может равняться тысячам лет.

Кентавры

Кентавры – ледяные кометоподобные объекты с большой полуосью, большей, чем у Юпитера, и меньшей, чем у Нептуна. У крупнейшего из известных кентавров Харикло диаметр приблизительно равен 250 км.

Транснептуновые объекты

Пространство за Нептуном, или «регион транстнептуновых объектов», все еще в значительной степени не исследовано. Предположительно, оно содержит только малые тела, состоящие главным образом из камней и льда.

Пояс Койпера

Пояс Койпера – область реликтов времен образования Солнечной системы, являющийся большим поясом осколков, подобным поясу астероидов, но состоящий в основном из льда. Он простирается между 30 и 55 а.е. от Солнца. Составлен главным образом малыми телами Солнечной системы. По оценкам, более 100 000 объектов пояса Койпера имеют диаметр больше 50 км, но полная масса пояса равна только одной десятой или даже сотой массы Земли. Многие объекты пояса обладают множественными спутниками, и большинство объектов орбиты располагаются вне плоскости эклиптики. Пояс Койпера разделен на «классический» пояс и резонансы. Резонансы – транснептуновые объекты, чья орбита создает орбитальный резонанс с орбитой Нептуна. Классические объекты пояса Койпера не находятся с Нептуном в орбитальном резонансе и простираются примерно от 39,4 до 47,7 а.е.

Планеты-карлики

23 августа 2006 г. Международный астрономический союз выделил еще одну категорию планет солнечной системы – планеты-карлики. Карликовая планета – небесное тело, обращающееся по орбите вокруг Солнца, которое достаточно массивно, чтобы под действием собственных сил гравитации поддержать близкую к округлой форму, но которое не очистило пространство своей орбиты от планетозималий и не является спутником планеты. По этому определению у Солнечной системы имеется пять признанных карликовых планет: Церера (находится в поясе астероидов), Плутон, Хаумеа, Макемаке и Эрида. В будущем другие объекты могут быть классифицированы как карликовые планеты, например, Седна, Орк и Квавар, Варун. Эти объекты находятся в поясе Койпера, в пространстве за Нептуном.

Плутон

Плутон – карликовая планета, крупнейший известный объект пояса Койпера (рис. 46).

Плутон открыт К. Томбо (1906-1997) в 1930 г. Он очень медленно (за 247,7 года) совершает оборот по орбите, которая имеет небольшой (17 0) наклон к плоскости эклиптики и вытянута настолько, что в перигелии Плутон подходит к Солнцу на более короткое расстояние, чем Нептун.

Рис. 46. Плутон

Плутон не относится ни к твердым, ни к газообразным планетам. По признакам, наблюдаемым с Земли, эта планета похожа на гигантское ледяное тело. Поверхность Плутона покрыта замерзшим метаном, а тонкая атмосфера периодически превращается в метановый снег. Вполне возможно, что Плутон представляет собой реликтовую часть материала, из которого образовалась наша Солнечная система.

Плотность Плутона больше плотности других внешних планет Солнечной системы. Поэтому ученые предполагают, что он либо образовался в другом месте Солнечной системы и в результате катастрофических возмущений орбиты занял современное положение, либо сформировался в иной планетной системе и лишь впоследствии был «захвачен» Солнцем. Все планеты Солнечной системы движутся в одном направлении, в единой плоскости, а Плутон составляет исключение. Движение его осуществляется в противоположном направлении.

Атмосфера Плутона весьма разряжена и состоит из газообразного метана с возможной примесью инертных газов. Масса его составляет 1,7% массы Земли.

Неясна ситуация с наибольшим спутником Плутона – Хароном. Продолжит ли он классифицироваться как спутник Плутона или будет переклассифицирован в карликовую планету. Поскольку центр масс системы Плутон – Харон находится вне их поверхностей, они должны рассмаитриваться в качестве двойной планетарной системы. Два меньших спутника – Никра и Гидра обращаются вокруг Плутона и Харона.

Хаумеа

Хаумеа – карликовая планета, хотя и меньше Плутона, но крупнейший из известных классических объектов пояса Койпера. Хаумеа имеет сильно вытянутую форму и период вращения вокруг своей оси 4 ч. Два спутника и еще по крайней мере восемь транснептуновых объектов являются частью семейства Хаумеа, которое сформировалось миллиарды лет назад из ледяных осколков, после того как большое столкновение разрушило ледяную мантию Хаумеа. Орбита карликовой планеты обладает большим наклонением – 28 0 .

Макемаке

Макемаке получила название карликовой планеты в 2008 г. В настоящее время является вторым по видимой яркости в поясе Койпера после Плутона. У Макемаке не обнаружено спутников. Имеет диаметр от 50 до 75% диаметра Плутона, орбита наклонена на 29 0 .

Рассеянный диск

Рассеянный диск частично перекрывается с поясом Койпера, но простирается намного далее за его пределы и, как предполагают, является источником короткопериодичных комет. Многие объекты рассеянного диска имеют перигелий в пределах пояса Койпера, но их афелий может простираться до 150 а.е. от Солнца. Орбиты объектов весьма наклонены к поясу эклиптики и часто почти перпендикулярны ему.

Эрида

Эрида (68 а.е. в среднем) – крупнейший объект рассеянного диска (рис. 47). Она является наибольшей из известных карликовых планет, на 5% больше, чем Плутон и имеет предполагаемый диаметр 2400 км. У Эриды имеется один спутник – Дисномия. Орбита сильно вытянута с перигелием 38,2 а.е. и афелием 97,6 а.е., сильно наклонена к плоскости эклиптики на 44,177 0 .

Отдаленные области

Рис. 47. Эрида

Вопрос о том, где именно заканчивается Солнечная система и начинается межзвездное пространство, неоднозначен. Ключевыми в их определении принимают два фактора: солнечный ветер и солнечное тяготение. Внешняя граница солнечного ветра – гелиопауза, за ней солнечный ветер и межзвездное вещество смешиваются, взаимно растворяясь. Гелиопауза находится примерно в четыре раза дальше Плутона и считается началом межзвездной среды. Область пространства, ограниченная гелиопаузой , называется гелиосферой (рис. 48).

Рис. 48. Гелиосфера

Однако предполагают, что область, в которой гравитация Солнца преобладает над галактической, – сфера Хилла, простирается в тысячу раз дальше. К отдаленным областям Солнечной системы относится облако Оорта – гипотетическое сферическое облако ледяных объектов, служащее источником долгопериодичных комет (рис. 49). В 2003 г. М. Браун открыл Седну – большой, подобный Плутону, красноватый объект с гигантской, чрезвычайно эллиптической орбитой, приблизительно от 76 а.е. в перигелии до 975 а.е. в афелии и периодом в 12 050 лет. Астрономы считают, что это первый объект новой популяции. Браун назвал эту популяцию «внутренним облаком Оорта». Седна могла бы быть признана карликовой планетой, если бы достоверно была определена ее форма.

Рис. 49. Предполагаемый вид облака Оорта

Пограничные области

Большая часть нашей Солнечной системы все еще неизвестна. По оценкам, гравитационное поле Солнца преобладает над гравитационными силами окружающих звезд на расстоянии приблизительно 2 световых лет (125 000 а.е.). В сравнении, нижние оценки радиуса облака Оорта не размещают его дальше 50 000 а.е. Несмотря на открытия таких объектов как Седна, область между поясом Койпера и облаком Оорта радиусом в десятки тысяч а.е. все еще практически не исследована. Также продолжается изучение области между Меркурием и Солнцем.

Простейшая классификация тел в Солнечной системе такова:

К малым телам Солнечной системы относят космические тела, которые не являются ни планетами, ни карликовыми планетами, ни их спутниками. Это кометы, астероиды, кентавры, дамоклоиды, метеорные тела, межпланетный газ и пыль. Их общая масса ничтожна по сравнению с большими планетами, не говоря уже о Солнце.

Астероид (термин "астероид" ввёл Уильям Гершель; "астероид" означает "звездоподобный"; в поле зрения телескопа выглядит как звёздочка) - относительно небольшое космическое тело, входящее в состав Солнечной системы и движущееся по орбите вокруг Солнца. Астероиды значительно уступают по массе планетам, имеют неправильную форму и не обладают атмосферой. У астероидов могут иметься спутники (например, астероид Ида и её спутник Дактиль). До 2006 г. астероиды называли также малыми планетами. Сегодня термин "малая планета" не используется.

Первый астероид (его назвали Церерой) был открыт 1 января 1801 г. итальянским астрономом Джузеппе Пьяцци. До этого никто и не подозревал о существовании астероидов. Диаметр Цереры около 950 км. Некоторое время Цереру считали полноценной планетой, потом присвоили статус астероида. С 24 августа 2006 года Цереру стали относить к карликовым планетам.

Второй открытый астероид (1802 г.) назвали Палладой. Первым астероидам присваивали имена в честь греческих и римских богинь.

К концу 2011 года было известно около 85 000 000 астероидов, свыше 560 000 из них были присвоены официальные номера и точно определены параметры их орбит. Большинство известных сегодня астероидов сосредоточено в так называемом главном поясе астероидов , расположенном между орбитами Марса и Юпитера:


Церера - самый крупный объект в этом поясе, хотя к астероидам теперь не относится. Крупнейшими астероидами являются Веста и Паллада (диаметры около 500 км). Веста - единственный астероид, который иногда можно заметить невооружённым глазом на звёздном небе на пределе возможностей человеческого зрения.

Астероиды объединяют в группы и семейства на основании характеристик их орбит. Группы астероидов - достаточно свободные образования, тогда как семейства - более плотные сборища (образовались в результате разрушения крупных астероидов). Крупные семейства астероидов могут содержать сотни крупных и сотни тысяч мелких астероидов. У астероидов в семействе сходны формы орбит, примерно одинаковы наибольшие и наименьшие расстояния от Солнца, периоды обращения вокруг него. На данный момент известно около 25 семейств астероидов. Например, семейство Эвномии, семейство Флоры, семейство Весты, семейство Фемиды...

Существуют астероиды, которые движутся по тем же орбитам, что и большие планеты Солнечной системы. Эти группы астероидов образуют равносторонние треугольники с планетой и Солнцем. Одна группа опережает планету, другая - следует за планетой на таком же расстоянии. Эти группы астероидов названы троянцами (одна из групп троянских астероидов Юпитера названа греками - в честь греков - участникой Троянской войны):


Эти группы не распадаются и стабильно движутся по орбите планеты ("астероиды-пленники"). Свои троянцы имеются у Марса, Юпитера, Сатурна, Урана и Нептуна. В 2010 году был обнаружен первый троянский астероид и у Земли (диаметр около 300 метров).

Поверхность крупных астероидов покрыта кратерами, пылью и щебнем, а мелких астероидов - только пылью и щебнем.


Чем больше и тяжелее астероид, тем большую опасность он представляет, однако и обнаружить его в этом случае гораздо легче. Наиболее опасным на данный момент считается астероид Апофис , диаметром около 300 м, при столкновении с которым в случае точного попадания может быть уничтожен большой город, однако никакой угрозы человечеству в целом такое столкновение не несёт. Представлять глобальную опасность могут астероиды более 10 км в поперечнике. Все астероиды такого размера известны астрономам и находятся на орбитах, которые не могут привести к столкновению с Землёй. В настоящий момент не существует астероидов, которые могли бы угрожать Земле.

В 1992 г. был открыт второй астероидный пояс за орбитой Нептуна, получивший название пояс Койпера . Он примерно в 20 раз шире и во много раз массивнее главного пояса астероидов. Объекты пояса Койпера, в отличие от астероидов главного пояса, состоят в основном из смёрзшихся летучих веществ - водяного, метанового и аммиачного льдов. Сейчас открыто более тысячи объектов пояса Койпера (там может быть несколько десятков тысяч объектов диаметром более 100 км). Крупнейшие из них: Квавар (1100 км), Орк (950 км), Иксион (800 км). В этой же области пространства движутся многие карликовые планеты (например, Плутон, Эрида, Седна ).

Космическое тело диаметром менее 100 метров относят к метеороидам или метеорным телам. Метеороид - твёрдое космическое тело, промежуточное по размеру между астероидом и межпланетной пылью. Мелкие метеорные тела (несколько миллиметров в поперечнике), вторгаясь на большой скорости (11-72 км/с) в верхние слои атмосферы Земли, из-за трения о воздух нагреваются и сгорают. Явление вспышки и горения метеорного тела, видимое с поверхности Земли, называется метеором . Обычно за ночь можно увидеть 3-5 метеоров в разных частях небосвода. Такие метеоры называют спорадическими . Но иногда количество метеоров возрастает, и кажется, будто они вылетают из определённой области неба. Если продолжить видимые пути метеоров, то они пересекутся приблизительно в одной точке - радианте . Тогда принято говорить об активности определённого метеорного потока.

Метеорный поток - это небесное явление, являющееся следствием прохождения Земли через рой метеорных тел, который представляет собой облако из мелких твёрдых частичек - остатков разрушившихся или разрушающихся комет. Метеорные рои, как и породившие их кометы, обращаются вокруг Солнца по орбитам. Земля в одни и те же даты года проходит через одни и те же метеорные рои. Известно 20-30 метеорных роёв и, соответственно, столько же метеорных потоков. В августе наблюдается метеорный поток, радиант которого находится в созвездии Персея. Это знаменитые Персеиды.

Комета - это небольшое ледяное космическое тело, обращающеся вокруг Солнца по сильно вытянутой орбите. Комета имеет ядро, состоящее из обычного водяного льда с примесью замерзших газов - углекислого (CO 2) и метана (СН 4), а также мелких твёрдых частичек (они-то и становятся потом метеорами). Ядра комет имеют от нескольких километров до десятков километров в поперечнике. Ядра окружены комой - туманной оболочкой из газов и пыли. Вдали от Солнца кометы не имеют хвостов, но по мере приближения к светилу испарение газов из ядра и освобождение твёрдых частиц усиливается, кома увеличивается. Солнечный ветер относит её в сторону, образуется хвост. Чем ближе комета подходит к Солнцу, тем длиннее становится хвост, достигая иногда десятков миллионов километров. Хвост кометы направлен в противоположную от Солнца сторону. Известный русский учёный-астроном Ф.А. Бредихин разработал теорию хвостов и форм комет. Он предложил делить кометные хвосты на три типа:

  • узкое и прямые, направленные от Солнца;
  • широкие и немного искривлённые;
  • короткие и сильно уклонённые от Солнца.

У кометы может быть и два, и даже три хвоста одновременно.

Когда комета проходит точку перигелия своей орбиты, её разрушение становится особенно интенсивным. Поскольку многие кометы возвращаются к Солнцу периодически, то их называют периодическими кометами. Если период небольшой - меньше 200 лет - её называют короткопериодической кометой (например, комета Галлея, которая прилетает раз в 76 лет). Сегодня известно более 400 короткопериодических комет. Если период большой - более 200 лет - то её называют долгопериодической кометой (например, кометы Хейла-Боппа, МакНота, Люлин...). Рано или поздно периодические кометы разрушаются.


Существуют и непериодические, "одноразовые" кометы. Нидерландский учёный-астроном Ян Оорт выдвинул теорию существования на окраинах Солнечной системы (100 - 150 тысяч а.е. от Солнца) гигантского облака, состоящего из ледяных глыб. Облако с тех пор называют облаком Оорта . Если по той или иной причине какая-либо из глыб постепенно приближается к Солнцу, то она становится кометой. Многие такие кометы подлетают к Солнцу всего один раз, после чего навсегда удаляются от него обратно в своё кометное облако. Объекты пояса Койпера и облака Оорта часто называют транснептуновыми (т.е. занептуновыми) объектами.

Кометы могут обращаться не только вокруг Солнца, но и вокруг самых больших планет - Юпитера и Сатурна. Некоторые кометы потом сталкиваются с этими планетами. Например, в 1994 г. комета Шумейкеров-Леви-9 (за 2 года до этого она распалась на 22 осколка) столкнулась с планетой Юпитер.


Более крупный метеороид даёт более яркую вспышку, которая называется болидом (более точно болид определяется как метеор, блеск которого больше -4 m или тело, у которого различим видимый размер). Крупные метеороиды могут не успеть сгореть в атмосфере и выпадают на поверхность Земли. Упавшее метеорное тело называют метеоритом , причём такое, которое можно найти и потрогать. Например, Тунгусский метеорит неправильно называть метеоритом, потому что он не обнаружен. Правильнее - Тунгусское тело. Скорее всего это был ледяной осколок кометы, который при падении испарился.

Полагают, что за 1 сутки на поверхность Земли выпадает 5-6 тонн метеоритов. После столкновения метеорита с твёрдой поверхностью остаётся круглое углубление - кратер ("кратер" в переводе с греческого означает "чаша"). Гигантские кратеры поперечником в несколько сотен километров иногда называют астроблемами ("блема" в переводе с греческого означает "рана").



На протяжении веков как только ни называли метеориты - и аэролитами, и сидеролитами, и уранолитами, и метеоролитами, а также небесными, воздушными, атмосферными и метеорными камнями!

Наиболее часто на землю падают каменные метеориты (состоят в основном из силикатных пород) - 93% от всех падений. Реже падают железные метеориты (состоят из железо-никелевого сплава) - 6% от всех падений. 1% от всех падений составляют железо-каменные метеориты . Понятное дело, что метеориты не могут быть обломками ледяных комет. Это обломки астероидов.

В 1977 г. был открыт астероид диаметром 166 км, у которого в 1988 г. обнаружили кому, как у кометы. С удалением объекта от Солнца кома исчезла. Этот объект с двойственной природой (астероид-комета) назвали Хироном. В древнегреческой мифологии Хирон - это имя кентавра (человек-конь). Все подобные Хирону космические тела объединили в класс кентавров . Сегодня известно более сотни кентавров. Все они движутся между орбитами Юпитера и Нептуна.

Дамоклоиды - небольшие космические тела, обращающиеся вокруг Солнца по орбитам, похожим на кометные (сильно вытянуты и сильно наклонены к плоскости земной орбиты), но не проявляющие кометной активности (не дающие комы и не образующие хвостов). Самый большой дамоклоид имеет диаметр 72 км, а всего открыто таких объектов на сегодняшний день чуть более 40. Дамоклоиды - одни из самых тёмных тел Солнечной системы. Считается, что дамоклоиды являются ядрами комет, зародившихся в облаке Оорта, но потерявших свои летучие вещества. Некоторые дамоклоиды обращаются вокруг Солнца в направлении, противоположном движению больших планет.

Кометы Солнечной системы всегда интересовали исследователей космического пространства. Вопрос о том, что из себя представляют данные явления, волнует и людей, далеких от изучения комет. Попробуем разобраться, как выглядит это небесное тело, может ли оно влиять на жизнедеятельность нашей планеты.

Содержание статьи:

Комета - это небесное тело, образовавшееся в Космосе, размеры которого достигают масштаба небольшого населенного пункта. Состав комет (холодные газы, пыль и обломки камней) делает подобное явление поистине уникальным. Хвост кометы оставляет шлейф, который исчисляется миллионами километров. Данное зрелище завораживает своей грандиозностью и оставляет больше вопросов, чем ответов.

Понятие кометы как элемента Солнечной системы


Чтобы разобраться с данным понятием, следует отталкиваться от орбит комет. Немало этих космических тел проходит через Солнечную систему.

Рассмотрим подробно особенности комет:

  • Кометы - это так называемые снежки, проходящие по своей орбите и имеющие в составе пыльные, скалообразные и газообразные скопления.
  • Разогревание небесного тела происходит в течение периода приближения к главной звезде Солнечной системы.
  • У комет отсутствуют спутники, которые характерны для планет.
  • Системы образований в виде колец также не свойственны для комет.
  • Размер данных небесных тел определить сложно и порой нереально.
  • Кометы не поддерживают жизнь. Впрочем, их состав может служить определенным строительным материалом.
Все перечисленное свидетельствует о том, что данное явление изучается. Об этом же говорит наличие двадцати миссий по исследованию объектов. Пока наблюдение ограничивается в основном изучением через сверхмощные телескопы, но перспективы открытий в этой области очень впечатляют.

Особенности строения комет

Описание кометы можно распределить на характеристики ядра, комы и хвостовой части объекта. Это говорит о том, что нельзя назвать изучаемое небесное тело простой конструкцией.

Ядро кометы


Практически вся масса кометы заключена именно в ядре, которое является наиболее сложным объектом для изучения. Причина состоит в том, что ядро скрыто даже от самых мощных телескопов материей светящегося плана.

Существует 3 теории, которые по-разному рассматривают строение ядра комет:

  1. Теория «грязного снежка» . Это предположение наиболее распространено и принадлежит американскому ученому Фреду Лоуренсу Уипплу. По данной теории, твердый участок кометы - не что иное, как соединение льда и фрагментов вещества метеоритного состава. По мнению этого специалиста, различают старые кометы и тела более молодой формации. Структура их различна по причине того, что более зрелые небесные тела неоднократно приближались к Солнцу, что подплавило их изначальный состав.
  2. Ядро состоит из пыльного материала . Теория была озвучена в начале 21 столетия благодаря изучению явления американской космической станцией. Данные этой разведки говорят о том, ядро - это пыльный материал очень рыхлого характера с порами, занимающими большинство его поверхности.
  3. Ядро не может представлять из себя монолитную конструкцию . Далее гипотезы расходятся: подразумевают структуру в виде снежного роя, глыб каменно-ледяного скопления и метеоритного нагромождения вследствие влияния планетарных гравитаций.
Все теории имеют право оспариваться или быть поддержанными учеными, практикующимися в этой области. Наука не стоит на месте, поэтому открытия в изучении строения комет еще долго будут ошеломлять своими неожиданными находками.

Кома кометы


Вместе с ядром голову кометы формирует кома, которая представляет из себя туманообразную оболочку светлого цвета. Шлейф такой составляющей кометы тянется на довольно большое расстояние: от ста тысяч до почти полутора миллионов километров от основы объекта.

Можно обозначить три уровня комы, которые выглядят следующим образом:

  • Внутренняя часть химического, молекулярного и фотохимического состава . Строение ее определяется тем, что в этой области сосредоточены и наиболее активизируются основные изменения, происходящие с кометой. Реакции химического плана, распад и ионизация нейтрально заряженных частиц - все это характеризует процессы, которые протекают во внутренней коме.
  • Кома радикалов . Состоит из активных по своей химической природе молекул. В данном участке не наблюдается повышенной активности веществ, которая так характерна для комы внутреннего плана. Впрочем, и здесь продолжается процесс распада и возбуждения описываемых молекул в более спокойном и плавном режиме.
  • Кома атомного состава . Ее еще называют ультрафиолетовой. Эту область атмосферы кометы наблюдают в водородной линии Лайман-альфа в удаленном ультрафиолетовом спектральном участке.
Изучение всех этих уровней важно для более глубинного исследования такого явления, как кометы Солнечной системы.

Хвост кометы


Хвост кометы - это уникальное по своей красоте и эффектности зрелище. Обычно направляется он от Солнца и выглядит в виде газо-пылевого шлейфа вытянутой формы. Четких границ такие хвосты не имеют, и можно сказать, что их цветовая гамма близка к полной прозрачности.

Федор Бредихин предложил классифицировать сверкающие шлейфы по таким подвидам:

  1. Прямолинейные и узкоформатные хвосты . Данные составляющие кометы имеют направление от главной звезды Солнечной системы.
  2. Немного деформированные и широкоформатные хвосты . Эти шлейфы уклоняются от Солнца.
  3. Короткие и сильно деформированные хвосты . Такое изменение вызвано значительным отклонением от главного светила нашей системы.
Можно разграничить хвосты комет и по причине их образования, что выглядит следующим образом:
  • Пылевой хвост . Отличительной визуальной чертой данного элемента является то, что свечение его имеет характерный красноватый оттенок. Шлейф подобного формата - однородный по своей структуре, протягивается на миллион, а то и десяток миллионов километров. Образовался он за счет многочисленных пылинок, которые энергия Солнца отбросила на дальнее расстояние. Желтый оттенок хвоста объясняется рассеиванием пылинок солнечным светом.
  • Хвост плазменной структуры . Этот шлейф гораздо обширнее, чем пылевой, потому что протяженность его исчисляется десятками, а порой и сотнями миллионов километров. Комета вступает во взаимодействие с солнечным ветром, от чего и возникает подобное явление. Как известно, солнечные вихревые потоки пронизаны большим количеством полей магнитной природы образования. Они, в свою очередь, сталкиваются с плазмой кометы, что приводит к созданию пары областей с диаметрально различной полярностью. Временами происходит эффектный обрыв этого хвоста и образование нового, что выглядит очень впечатляюще.
  • Антихвост . Появляется он по другой схеме. Причина заключается в том, что направляется он в солнечную сторону. Влияние солнечного ветра на подобное явление крайне невелико, потому что в состав шлейфа входят пылевые частицы крупного размера. Наблюдать подобный антихвост реально только при моменте пересечения Землей орбитальной плоскости кометы. Дискообразное образование окружает небесное тело практически со всех сторон.
Осталось немало вопросов касаемо такого понятия, как кометный хвост, что дает возможность более углубленно изучать данное небесное тело.

Основные разновидности комет


Виды комет можно разграничить по времени их обращения вокруг Солнца:
  1. Короткопериодические кометы . Время обращения такой кометы не превышает 200 лет. На максимальной отдаленности от Солнца они не имеют хвостов, а только еле уловимую кому. При периодическом приближении к главному светилу шлейф появляется. Зафиксировано более четырехсот подобных комет, среди которых есть короткопериодичные небесные тела с термином обращения вокруг Солнца 3-10 лет.
  2. Кометы с долгим периодом обращения . Облако Оорта, по мнению ученых, периодически поставляет таких космических гостей. Орбитальный термин данных явлений превышает отметку в двести лет, что делает изучение подобных объектов более проблематичным. Двести пятьдесят таких пришельцев дают основание утверждать, что на самом деле их миллионы. Не все из них настолько приближаются к главной звезде системы, что появляется возможность наблюдать за их деятельностью.
Изучение данного вопроса всегда будет привлекать специалистов, которые хотят постичь тайны бесконечного космического пространства.

Самые известные кометы Солнечной системы

Существует большое количество комет, которые проходят через Солнечную систему. Но есть наиболее известные космические тела, о которых стоит поговорить.

Комета Галлея


Комета Галлея стала известна благодаря наблюдениям за ней известного исследователя, в честь которого она и получила свое название. Отнести ее можно к короткопериодическим телам, потому что возвращение ее к главному светилу исчисляется периодом в 75 лет. Стоит отметить изменение этого показателя в сторону параметров, которые колеблются в пределах 74-79 лет. Знаменитость ее заключается в том, что это первое небесное тело такого типа, орбиту которого удалось рассчитать.

Безусловно, некоторые долгопериодические кометы более эффектны, но 1P/Halley реально наблюдать даже невооруженным глазом. Этот фактор делает подобное явление уникальным и популярным. Практически тридцать зафиксированных появлений этой кометы порадовали сторонних наблюдателей. Периодичность их напрямую зависит от гравитационного влияния крупных планет на жизнедеятельность описанного объекта.

Скорость кометы Галлея по отношению к нашей планете поражает, потому что превышает все показатели деятельности небесных тел Солнечной системы. Сближение земной орбитальной системы с орбитой кометы можно наблюдать в двух точках. Это приводит к двум пыльным образованиям, которые в свою очередь формируют метеоритные потоки под названием Аквариды и Ореаниды.

Если рассматривать структуру подобного тела, то она мало чем отличается от других комет. При приближении к Солнцу наблюдается образование сверкающего шлейфа. Ядро кометы относительно мало, что может свидетельствовать о груде обломков в виде строительного материала для основы объекта.

Насладиться необыкновенным зрелищем прохождения кометы Галлея можно будет летом 2061 года. Обещается лучшая видимость грандиозного явления по сравнению с более чем скромным визитом в 1986 году.


Это достаточно новое открытие, которое было сделано в июле 1995 года. Два исследователя Космоса обнаружили эту комету. Причем, эти ученые вели отдельные друг от друга поиски. Существует множество разных мнений касательно описываемого тела, но специалисты сходятся на версии, что оно является одной из самых ярких комет прошлого столетия.

Феноменальность данного открытия заключается в том, что в конце 90-х годов комету наблюдали без специальных аппаратов в течение десяти месяцев, что само по себе не может не удивлять.

Оболочка твердого ядра небесного тела довольно неоднородна. Обледеневшие участки не перемешанных газов соединены с углеродной окисью и прочими природными элементами. Обнаружение минералов, которые характерны для структуры земной коры, и некоторые метеоритные образования лишний раз подтверждают, что комета Хейла-Бопа возникла в пределах нашей системы.

Влияние комет на жизнедеятельность планеты Земля


Существует много гипотез и предположений относительно этой взаимосвязи. Есть некоторые сравнения, которые носят сенсационный характер.

Исландский вулкан Эйяфьятлайокудль начал свою активную и разрушительную двухгодичную деятельность, которая удивила многих ученых того времени. Случилось это практически сразу после того, как знаменитый император Бонапарт увидел комету. Возможно, это совпадение, но есть и другие факторы, которые заставляют задуматься.

Ранее описываемая комета Галлея странно повлияла на активность таких вулканов, как Руис (Колумбия), Тааль (Филиппины), Катмай (Аляска). Свое воздействие от этой кометы почувствовали люди, проживающие рядом с вулканом Коссуин (Никарагуа), который начал одну из самых разрушительных деятельностей тысячелетия.

Комета Энке стала причиной мощнейшего извержения вулкана Кракатау. Все это может зависеть от солнечной активности и деятельности комет, которые провоцируют при своем приближении к нашей планете некоторые ядерные реакции.

Падение комет является довольно редким. Однако некоторые специалисты считают, что Тунгусский метеорит относится как раз к подобным телам. В качестве аргументов они приводят такие факты:

  • За пару дней до катастрофы наблюдалось появление зорь, которые своей пестротой свидетельствовали об аномальности.
  • Возникновение такого явления, как белые ночи, в несвойственных для него местах сразу после падения небесного тела.
  • Отсутствие такого показателя метеоритности, как наличие твердого вещества данной конфигурации.
Сегодня нет вероятности повторения подобного столкновения, но не стоит забывать, что кометы - это объекты, траектория которых может измениться.

Как выглядит комета - смотрите на видео:


Кометы Солнечной системы - тема увлекательная и требующая дальнейшего изучения. Ученые всего мира, занимающиеся исследованием Космоса, стараются разгадать тайны, которые несут в себе эти небесные тела поразительной красоты и мощи.

В состав Солнечной системы входит не только Солнце и 8 больших планет. Огромное число различных более мелких объектов тоже вращается по различным орбитам вокруг Солнца. Все они также заслуживают своего изучения.

Среди малых тел можно выделить:
- "карликовые планеты" (этот термин был введён после отмены для Плутона статуса планеты для него и всех подобных ему объектов);
- астероиды, или "малые планеты";
- кометы;
- метеоритные тела или метеориды (т. е. просто небольшие камни);
- пыль и газ.

Карликовые планеты

Термин "карликовые планеты" был введён решением XXVI Генеральной ассамблеи МАС (международного астрономического союза) в 2006 г. После бурных дебатов было решено, что Плутон, который меньше всех других планет Солнечной системы и даже их крупных спутников, следует лишить его статуса планеты, который был у Плутона с момента его открытия в 1930 г., а вместо этого ввести для него и некоторых других обнаруженных к тому времени на окраинах Солнечной системы объектов, масса которых был сравнима с массой Плутона, специальное определение "карликовая планета". Был предложен следующий набор критериев для того, чтобы определить принадлежность объекта к группе карликовых планет:
1) карликовая планета вращается вокруг Солнца:
2) сила гравитации карликовой планеты достаточна, чтобы придать её сферическую форму;
3) карликовая планета не очищает пространство вокруг себя (чтобы рядом с ним не было других сравнимых по размерам тел);
4) не является спутником другой планеты;

В настоящее время под определение "карликовых планет" попадают собственно Плутон, Церера (самый большой объект в ближнем поясе астероидов) и Эрида (недавно открытый объект в поясе Койпера, находящийся ещё дальше Плутона), и ещё для нескольких объектов причисление их к разряду карликовых планет рассматривается.

Характеристики Плутона

средний радиус орбиты: 5,913,520,000 км
диаметр: 2370 км
масса: 1.3 *10^22 кг

Орбита Плутона находится в основном за орбитой Нептуна, но имеет большой эксцентриситет, из-за чего Плутон иногда находится ближе к Солнцу, чем Нептун. Период обращения по орбите - 245,73 лет. Какие-либо детали на Плутоне невозможно рассмотреть в телескоп, и, после его открытия в 1930 г. долгое время ошибочно считалось, что размеры и масса Плутона близки к земным. На самом деле Плутон в 5 с лишним раз меньше Земли по размерам и в 500 раз - по массе. Он также меньше Луны. Известно также, что у Плутона имеется пять спутников. Самый крупный из них - Харон, открытый в 1978 г., он всего примерно в 2 раза меньше самого Плутона.

В июле 2015 космический аппарат "Новые горизонты", запущенный НАСА, впервые достиг Плутона. Он пролетел на расстоянии менее 10 тыс. км от Плутона и сделал довольно хорошие фото поверхности. На Плутоне обнаружены горы высотой более 3 тыс. км., состоящие, предположительно, изо льда, но большая часть поверхности - равнины.

Астероиды, пояс Койпера и облако Оорта

Астероид - небольшое планетоподобное тело Солнечной системы, движущийся по орбите вокруг Солнца. Первый астероид Церера был случайно открыт итальянцем Пиацци 1 января 1801 г., после него в течение нескольких лет было открыто ещё 3 крупных астероида. Затем в открытии астероидов наступил перерыв, а после 1835 г. их начали открывать в большом количестве. В настоящее время известны десятки тысяч астероидов. Предполагается, что в Солнечной системе может находиться от 1.1 до 1.9 миллиона объектов, имеющих размеры более 1 км.

Большинство астероидов, открытых на настоящий момент, обращаются по схожим орбитам между орбитами Марса и Юпитера. Очевидно, сильное гравитационное поле Юпитера в период возникновения Солнечной системы помешало сформироваться в этом месте ещё одной планете.
Несмотря на очень большую численность астероидов, размеры подавляющео большинства их крайне малы, а общая масса всего ближнего пояса астероидов оценивается всего в 4% от массы Луны. Несколько астероидов были изучены вблизи и сфотографированы космическими аппаратами.

астероид Ида и её маленький спутник

Впоследствии стало ясно, что подобных поясов, в которых обращаются вокруг Солнца множество мелких тел, больше одного. В начале 1950-х годов Оорт и Койпер высказали предположение о существовании подобных поясов за орбитой Нептуна. Пояс Койпера находится от Солнца на расстоянии примерно 30-50 астрономических единиц и, по оценкам астрономов, только объектов, размер которых больше 100 км, в нём насчитывается десятки тысяч. Масса пояса Койпера существенно превышает массу ближнего пояса астероидов. На сегодняшний день в поясе Койпера открыто уже более 800 объектов. Облако Оорта, из которого, согласно расчётам, к Солнцу изредка прилетают некоторые долгопериодические кометы, находится ещё дальше, чем пояс Койпера.

Пояс Койпера и облако Оорта.

Крупнейшие объекты в поясе Койпера.
Внизу Земля для сравнения.

Слово «комета» в переводе с греческого означает «волосатая», «длинноволосая». Кометы, пролетающие по небу, люди время от времени наблюдали ещё с глубокой древности. Считалось, что появление комет сулит разные дурные предзнаменования.

В 1702 году Эдмунд Галлей доказал, что кометы, наблюдавшиеся в 1531, 1607 и 1682 годах - это на самом деле не разные кометы, а одна и та же, которая, двигаясь по своей орбите вокруг Солнца, периодически возвращается через определённый промежуток времени. Эта комета была названа его именем - комета Галлея.

Орбиты большинства комет - это очень сильно вытянутые эллипсы. Предположительно, кометы прилетают из облака Оорта, в котором содержится огромное число мелких объектов, вращающихся на огромном удалении от Солнца. Под действием разных причин некоторые из этих объектов время от времени изменяют траекторию и приближаются к Солнцу, становясь кометами.
При приближении кометы к Солнцу замёрзшие газы на её поверхности начинают испаряться и образуют огромный хвост, который тянется за кометой на миллионы километров. Под давлением солнечного излучения и солнечного ветра хвост комет всегда направлен от Солнца. Из-за постоянного испарения ядро кометы постепенно уменьшается в массе и, в конце концов разрушается, оставляя вместо себя лишь массу мелких обломков. Иногда, когда Земля пересекает орбиты бывших комет, массы мелких частиц влетают в атмосферу, образуя метеорный дождь.

Некоторые кометы были изучены космическими аппаратами, например, советский аппарат "Вега" в 1986 г. изучил комету Галлея, а в 2005 космический аппарат НАСА "Дип импакт" был специально приведён в столкновение с ядром кометы Темпеля.

Метеорные тела, пыль и газ

Согласно принятым соглашениям, астероидами должны считаться тела, размеры которых больше 1 км. Меньшие по размеру объекты считаются меторидами или метеорными телами. Число подобных объектов, находящихся в Солнечной системе, огромно.
Иногда летающие в космосе объекты попадаются на пути Земли. Давно, на ранних этапах существования Солнечной системы столкновения планет с разными телами, в том числе весьма крупными, случались часто - об этом говорят, в частности, многочисленные кратеры на поверхности Луны и других небесных тел. Сейчас вероятность столкновения Земли с крупным объектом мала, но она всё же существует, поэтому важно изучать космическое пространство и выявлять объекты, орбиты которых могут пересечься с орбитой Земли.
Мелкие космические объекты на пути Земли попадаются постоянно. Влетая в атмосферу, большинство из них сгорает на большой высоте, не успев долететь до поверхности. Такие объекты, выглядящие как падающие звёзды, называются метеорами. Очень редко попадаются достаточно курпные объекты, которые не успевают полностью сгореть в атмосфере и падают на поверхность Земли. Такие объекты называются метеоритами. Метеориты бывают в основном каменные, а также железные и железо-каменные. Интересно, что наиболее древние железные изделия были изготовлены людьми именно из метеоритного железа. Крайне редко на Землю могут упасть большие объекты, способные причинить сильные разрушения. Предполагается, что падение на Землю 65 млн. лет назад крупного астероида, кратер от которого обнаружен на дне Мексиканского залива, могло послужить одной из причин вымирания динозавров.

Межпланетное пространство не пусто. В Солнечной системе достаточно много мелкой межпланетной пыли. Её запасы всё время пополняются вследствие разрушения комет, столкновений астероидов и т. п. Кроме того, далеко за орбиту Плутона проникает солнечный ветер - поток исходящих от Солнца частиц. Концентрация газа и пыли в Солнечной системе существенно выше, чем в межзвёздном пространстве.

Кометы – небольшие небесные тела, вращающиеся вокруг Солнца: описание и характеристика с фото, 10 интересных фактов о кометах, список объектов, названия.

В прошлом люди смотрели на прибытие комет с ужасом и боязнью, так как считали, что это предзнаменование смерти, катастроф или божьей кары. Китайские ученые веками собирали данные, отслеживая периодичность прибытия объектов и их траекторию. Эти летописи стали ценными ресурсами для современных астрономов.

Сегодня мы знаем, что кометы выступают остаточным материалом и малыми телами от формирования Солнечной системы 4.6 млрд. лет назад. Они представлены льдом, на котором находится темная корочка органического материала. Из-за этого получили прозвище «грязные снежки». Это ценные объекты для изучения ранней системы. Также они могли стать источником воды и органических соединений – необходимые жизненные компоненты.

В 1951 году Джерард Койпер предположил, что за чертой орбитального пути Нептуна скрывается дискообразный пояс с популяцией темных комет. Эти ледяные объекты периодически выталкиваются на орбиты и становятся короткопериодическими кометами. Тратят на орбиту меньше 200 лет. Сложнее наблюдать за кометами с длинными периодами, длительность орбитального пути которых превышает два века. Такие объекты проживают на территории облака Оорта (на удаленности в 100000 а.е.). На один облет могут потратить до 30 млн. лет.

В каждой комете есть замороженная часть – ядро, которое в протяжности не превышает нескольких километров. Состоит из ледяных осколков, замерзших газов и пылевых частиц. С приближением к Солнцу комета нагревается и формирует кому. Нагрев приводит к тому, что лед сублимируется в газ, поэтому кома расширяется. Иногда она способна охватывать сотни тысяч км. Солнечный ветер и давление могут устранять пыль и газ комы, что приводит к длинному и яркому хвосту. Обычно их два – пылевой и газовый. Ниже представлен список самых известных комет Солнечной системы. Перейдите по ссылке, чтобы изучить описание, характеристику и фото малых тел.

Название Открыта Первооткрыватель Большая полуось Период обращения
21 сентября 2012 года Виталий Невский, Артём Олегович Новичонок, Обсерватория ISON-Кисловодск ? ?
1786 года Пьер Мешен 2.22 а. е. 3,3 г
24 марта 1993 года Юджин и Каролина Шумейкеры, Дэвид Леви 6.86 а. е. 17,99 г
3 апреля 1867 года Эрнст Темпель 3.13 а. е. 5,52 г
28 декабря 1904 года А. Борелли 3.61 а. е. 6,85 г
23 июля 1995 А. Хейл, Т. Бопп 185 а. е. 2534 г
6 января 1978 Пауль Вильд 3.45 а. е. 6,42 г
20 сентября 1969 года Чурюмов, Герасименко 3.51 а. е. 6,568 г
3 января 2013 года Роберт Макнот, обсерватория Сайдинг-Спринг ? 400000 г
20 декабря 1900 года Мишель Джакобини, Эрнст Циннер 3.527 а. е. 6,623 г
5 апреля 1861 года А.Е. Тэтчер 55,6 а. е. 415,0 г
16 июля 1862 года Льюис Свифт, Туттль, Хорас Парнелл 26.316943 а. е. 135,0 г
19 декабря 1865 года Эрнст Темпель и Хорас Туттль 10.337486 а. е. 33,2г
1758 год Наблюдалась в глубокой древности; 2,66795 млрд км 75,3 г
31 октября 2013 года Обсерватория Catalina Sky Survey ? ?
6 июня 2011 года Телескоп Pan-STARRS ? ?

Большая часть комет движется на безопасной отдаленности от Солнца (комета Галлея не подходит ближе 89 млн. км). Но некоторые врезаются прямо в звезду или так сближаются, что испаряются.

Наименование комет

Название кометы может быть сложным. Чаще всего их называют в честь первооткрывателей – человек или космический корабль. Это правило появилось только в 20-м веке. К примеру, комета Шумейкера-Леви 9 названа в честь Юджина и Кэролин Шумейкер и Дэвида Леви. Обязательно прочитайте интересные факты о кометах и информацию, которую нужно знать.

Кометы: 10 вещей, о которых нужно знать

  • Если бы наша звезда Солнце по размеру сопоставлялась с дверью, то Земля напоминала монетку, карликовый Плутон – булавочная головка, а крупнейшая комета пояса Койпера (100 км в ширину) занимала бы диаметр пылинки;
  • Короткопериодические кометы (тратят на орбитальный пролет меньше 200 лет) проживают на ледяной территории пояса Койпера за орбитой Нептуна (30-55 а.е.). При максимальной удаленности комета Галлея расположена в 5.3 млрд. км от Солнца. Долгопериодические кометы (длинные или непредсказуемые орбиты) приближаются из облака Оорта (100 а.е. от Солнца);
  • Один день на комете Галлея длится 2.2-7.4 дней (один осевой оборот). На выполнение одного оборота вокруг Солнца тратит 76 лет;
  • Кометы представляют собою космические снежки с замороженными газами, пылью и камнями;
  • С приближением к Солнцу комета нагревается, создавая атмосферу (кома), способную охватывать в диаметре на сотни тысяч км;
  • У комет нет колец;
  • У комет нет спутников;
  • К кометам отправляли несколько миссий, а Stardust-NExT и Deep Impact EPOXI удалось раздобыть образцы;
  • Кометы не способны поддерживать жизнь, но полагают, что выступают ее источником. В своем составе могут транспортировать воду и органические соединения, которые, возможно, оказались на Земле при столкновении;
  • Комета Галлея отображена в гобелене Байе 1066 года, где рассказывается о падении короля Гарольда от руки Уильяма Завоевателя;