Относительное механическое движение система отсчета. Кинематика

В самом начале изучения механического движения подчеркивался его относительный характер. Движение можно рассматривать в разных системах отсчета. Конкретный выбор системы отсчета диктуется соображениями удобства: ее следует выбирать так, чтобы изучаемое движение и его закономерности выглядели как можно проще.

Движение в разных системах отсчета. Для перехода от одной системы отсчета к другой необходимо знать, какие характеристики движения остаются неизменными, а какие при таком переходе изменяются и каким образом.

Начнем со времени. Опыт показывает, что, пока речь идет о движениях, происходящих со скоростями, малыми по сравнению со скоростью света, время «течет» одинаково во всех системах отсчета и в этом смысле может считаться абсолютным. Это значит, что промежуток времени между двумя событиями одинаков при его измерении в любой системе отсчета.

Перейдем к пространственным характеристикам. Положение частицы, определяемое ее радиусом-вектором изменяется при переходе к другой системе отсчета. Однако относительное пространственное расположение двух событий при этом не меняется и в этом смысле является абсолютным. Например, от выбора системы отсчета не зависят относительное положение двух частиц в какой-то один момент времени, задаваемое разностью их радиусов-векторов пространственные размеры твердых тел и т. п.

Таким образом, согласно классическим представлениям нерелятивистской физики промежутки времени и пространственные расстояния между одновременными событиями абсолютны. Эти представления, как выяснилось после создания теории относительности, справедливы лишь при сравнительно медленных движениях систем отсчета. В теории относительности представления о пространстве и времени претерпели существенные изменения. Однако новые релятивистские представления, пришедшие на смену классическим, переходят в них в предельном случае медленных движений.

Рассмотрим теперь изменение скорости движения частицы при переходе от одной системы отсчета к другой, движущейся относительно первой. Вопрос этот тесно связан с принципом независимости перемещений, обсуждавшимся в § 5. Вернемся к примеру с

переправой на пароме через фиорд, когда паром движется поступательно относительно берегов. Обозначим вектор перемещения пассажира относительно берегов (т. е. в системе отсчета, связанной с землей) через а его перемещение относительно парома (т. е. в системе отсчета, связанной с паромом) - через Перемещение самого парома относительно земли за то же время обозначим через Тогда

Разделив это равенство почленно на время в течение которого эти перемещения произошли, и перейдя к пределу при получим аналогичное (1) соотношение для скоростей:

где - скорость пассажира относительно земли, V - скорость парома относительно земли, скорость пассажира относительно парома. Выражаемое равенством (2) правило сложения скоростей при одновременном участии тела в двух движениях можно трактовать как закон преобразования скорости тела при переходе от одной системы отчета к другой. В самом деле, и - это скорости пассажира в двух разных системах отсчета, скорость одной из этих систем (парома) относительно другой (земли).

Таким образом, скорость тела в какой-либо системе отсчета равна векторной сумме скорости этого тела в другой системе отсчета и скорости V этой второй системы отсчета относительно первой. Отметим, что выражаемый формулой (2) закон преобразования скоростей справедлив только для сравнительно медленных (нерелятивистских) движений, так как его вывод опирался на представление об абсолютном характере промежутков времени (значение считалось одинаковым в двух системах отсчета).

Относительная скорость и ускорение. Из формулы (2) следует, что относительная скорость двух частиц одинакова во всех системах отсчета. В самом деле, при переходе к новой системе отсчета к скорости каждой из частиц прибавляется один и тот же вектор V скорости системы отсчета. Поэтому разность векторов скоростей частиц при этом не изменяется. Относительная скорость частиц абсолютна!

Ускорение частицы в общем случае зависит от системы отсчета, в которой рассматривается ее движение. Однако ускорение в двух системах отсчета одинаково, когда одна из них движется равномерно и прямолинейно относительно другой. Это сразу следует из формулы (2) при

При изучении конкретных движений или решении задач можно использовать любую систему отсчета. Разумный выбор системы отсчета может существенно облегчить получение необходимого

результата. В рассмотренных до сих пор примерах исследования движений этот вопрос не заострялся - выбор системы отсчета как бы навязывался самим условием задачи. Однако во всех случаях, даже когда выбор системы отсчета на первый взгляд очевиден, полезно задуматься о том, какая система отсчета действительно окажется оптимальной. Проиллюстрируем это на следующих задачах.

Задачи

1. Вниз и вверх по течению. Моторная лодка плывет вниз по течению с постоянной скоростью. В некотором месте с лодки в воду падает запасное весло. Через время мин потеря обнаруживается и лодка поворачивает обратно. Какова скорость течения реки, если весло было подобрано на расстоянии км ниже по течению от места потери?

Решение. Выберем систему отсчета, связанную с движущейся водой. В этой системе отсчета вода неподвижна и весло все время лежит в том месте, куда оно упало. Лодка сначала удаляется от этого места в течение времени затем поворачивает обратно. Обратный путь к веслу займет такое же время так как скорость лодки относительно воды не зависит от направления движения. За все это время течение сносит весло на расстояние относительно берегов. Поэтому скорость течения мин

Чтобы убедиться в том, насколько удачный выбор системы отсчета облегчает здесь получение ответа на поставленный вопрос, решите эту задачу в системе отсчета, связанной с землей.

Обратим внимание на то, что приведенное решение не претерпевает изменений, если лодка плывет по широкой реке не вниз по течению, а под некоторым углом к нему: в системе отсчета, связанной с движущейся водой, все происходит, как в озере, где вода неподвижна. Легко сообразить, что на обратном пути нос лодки следует направить прямо на плывущее весло, а не на то место, где его уронили в воду.

Рис. 58. Движение автомобилей по пересекающимся дорогам

2. Перекресток дорог. Две автомобильные дороги пересекаются под прямым углом (рис. 58). Движущийся по одной из них со скоростью автомобиль А находится на расстоянии от перекрестка в тот момент, когда его пересекает автомобиль В, движущийся со скоростью по другой дороге. В какой момент времени расстояние между автомобилями по прямой будет минимальным? Чему оно равно? Где в этот момент находятся автомобили?

Решение. В этой задаче удобно связать систему отсчета с одним из автомобилей, например со вторым. В такой системе отсчета второй автомобиль неподвижен а скорость первого равна его скорости относительно второго, т. е. разности (рис. 59):

Движение первого автомобиля относительно второго происходит по прямой направленной вдоль вектора V,. Поэтому искомое кратчайшее расстояние между автомобилями равно длине перпендикуляра опущенного из точки В на прямую Рассматривая подобные треугольники на рис. 59, имеем

Время сближения автомобилей до этого расстояния можно найти, разделив длину катета на скорость первого автомобиля относительно второго:

Рис. 59. Скорости в системе отсчета, связанной с одним из автомобилей

Положения автомобилей в этот момент времени можно найти, сообразив, что в исходной системе отсчета, связанной с землей, второй автомобиль уедет от перекрестка на растояние, равное

Первый автомобиль за это время приблизится к перекрестку на расстояние

3. Встречные поезда. Два поезда одинаковой длины движутся навстречу друг другу по параллельным путям с одинаковой скоростью В момент, когда кабины тепловозов поравнялись друг с другом, один из поездов начинает тормозить и движется дальше с постоянным ускорением. Он останавливается спустя время как раз в тот момент, когда поравнялись хвосты поездов. Найдите длину поезда.

Решение. Свяжем систему отсчета с равномерно движущимся поездом. В этой системе он неподвижен, а встречный поезд в начальный момент имеет скорость Движение второго поезда и в этой системе отсчета будет равнозамедленным. Поэтому средняя скорость движения тормозящего поезда равна Пройденный за время торможения путь (относительно первого поезда) равен общей длине двух поездов, т. е. 21. Поэтому

откуда находим

Обратим внимание на то, что в этой задаче переход в движущуюся систему отсчета использовался для рассмотрения неравномерного движения тела, однако движение самой системы отсчета было равномерным. Следующие задачи

показывают, что иногда бывает удобно переходить в ускоренно движущуюся систему отсчета.

4. «Охотник и обезьянка». При стрельбе по горизонтально движущейся цели опытный охотник прицеливается с некоторым «упреждением», поскольку за время полета дроби цель успевает переместиться на некоторое расстояние. Куда он должен целиться при стрельбе по свободно падающей мишени, если выстрел производится одновременно с началом ее падения?

Решение. Выберем систему отсчета, связанную со свободно падающей мишенью. В этой системе отсчета мишень неподвижна, а дробинки летят равномерно и прямолинейно со скоростью приобретаемой в момент выстрела. Так происходит потому, что свободное падение всех тел в системе отсчета, связанной с землей, происходит с одинаковым ускорением

В системе отсчета, свободно падающей с ускорением где мишень неподвижна, а дробинки летят прямолинейно, становится очевидным, что целиться нужно точно в мишень. Этот факт не зависит от значения начальной скорости дробинок - она может быть любой. Но при слишком малой начальной скорости дробинки могут просто не успеть долететь до мишени, пока она находится в свободном падении. Если мишень падает с высоты , а начальное расстояние до нее по прямой равно то, как легко убедиться, должно быть выполнено неравенство

откуда и получается ограничение на начальную скорость дробинок:

При меньшей начальной скорости дробинки упадут на землю раньше мишени.

5. Граница достижимых целей. В предыдущем параграфе была найдена граница простреливаемой области при заданном значении начальной скорости Все рассуждения проводились в системе отсчета, связанной с Землей. Найдите эту границу, рассматривая движение в свободно падающей системе отсчета. которая «падает» с ускорением свободного падения Ее уравнение имеет вид

На самом деле это уравнение целого семейства окружностей: придавая разные значения, получаем окружности, на которых находятся частицы в различные моменты времени. Искомая граница - это огибающая такого семейства окружностей (рис. 60). Очевидно, что высшая ее точка лежит над точкой вылета частиц.

Будем искать границу следующим образом. Заметим, что вылетевшие в один и тот же момент времени частицы достигают границы в разные моменты времени: граница касается разных окружностей.

Рис. 60. Граница достижимых целей как огибающая семейства окружностей

Проведя горизонтальную прямую на некотором уровне у, найдем на ней наиболее удаленную от оси ординат точку, которой еще достигают частицы, не задумываясь о том, какой окружности эта точка принадлежит. Абсцисса х этой точки, очевидно, удовлетворяет уравнению (3) семейства окружностей. Переписав его в виде

Какие из кинематических величин изменяются при переходе от одной системы отсчета к другой, а какие остаются неизменными?

Объясните, почему относительная скорость двух частиц одинакова во всех системах отсчета.

Приведите аргументы, свидетельствующие о том, что классический закон преобразования скорости при переходе от одной системы отсчета к другой опирается на представление об абсолютном характере времени.

Каким должно быть относительное движение двух систем отсчета, чтобы при переходе от одной из них к другой ускорение частицы изменялось?

«Физика - 10 класс»

По характеру решаемых задач механику делят на кинематику и динамику .

В кинематике описывают движение тел без выяснения причин, вызывающих данное движение

Первое, что бросается в глаза при наблюдении окружающего нас мира, - это его изменчивость. Мир не является застывшим, статичным. Изменения в нём весьма разнообразны. Но если спросить вас, какие изменения вы замечаете чаще всего, то ответ, пожалуй, будет однозначным: изменяется положение предметов (или тел, как говорят физики) относительно земли и относительно друг друга с течением времени .

Бежит ли собака, или мчится автомобиль - с ними происходит один и тот же процесс: их положение относительно земли и относительно вас изменяется с течением времени. Они перемещаются. Сжимается пружина, прогибается доска, на которую вы сели, - изменяется положение различных частей тела относительно друг друга.

Изменение положения тела или частей тела в пространстве относительно других тел с течением времени называется механическим движением .

Определение механического движения выглядит просто, но простота эта обманчива. Прочтите определение ещё раз и подумайте, все ли слова вам ясны: пространство, время, относительно других тел . Скорее всего, эти слова требуют пояснения.

Пространство и время.

Пространство и время - наиболее общие понятия физики и... наименее ясные.

Исчерпывающих сведений о пространстве и времени мы не имеем. Но и те результаты, которые получены сегодня, изложить в самом начале изучения физики невозможно.

Обычно нам вполне достаточно уметь измерять расстояние между двумя точками пространства с помощью линейки и интервалы времени с помощью часов. Линейка и часы - важнейшие приспособления для измерений в механике, да и в быту. С расстояниями и интервалами времени приходится иметь дело при изучении многих явлений во всех областях науки.

«...Относительно других тел».

Если эта часть определения механического движения ускользнула от вашего внимания то вы рискуете не понять самого главного. Например, в купе вагона на столике лежит яблоко. Во время отправления поезда двух наблюдателей (пассажира и провожающего) просят ответить на вопрос: яблоко движется или нет?

Каждый наблюдатель оценивает положение яблока по отношению к себе. Пассажир видит, что яблоко находится на расстоянии 1 м от него и это расстояние сохраняется с течением времени. Провожающий на перроне видит, как с течением времени расстояние от него до яблока увеличивается.

Пассажир отвечает, что яблоко не совершает механического движения - оно неподвижно; провожающий говорит, что яблоко движется.

Закон относительности движения:
Характер движения тела зависит от того, относительно каких тел мы рассматриваем данное движение.

Приступим к изучению механического движения. Человечеству понадобилось около двух тысяч лет, чтобы встать на верный путь, который завершился открытием законов механического движения.

Попытки древних философов объяснить причины движения, в том числе и механического, были плодом чистой фантазии. Подобно тому, рассуждали они, как утомлённый путник ускоряет шаги по мере приближения к дому, падающий камень начинает двигаться всё быстрее и быстрее, приближаясь к матери-земле. Движения живых организмов, например кошки, казались в те времена гораздо более простыми и понятными, чем падение камня. Были, правда, и гениальные озарения. Так, греческий философ Анаксагор говорил, что Луна, если бы не двигалась, упала бы на Землю, как падает камень из пращи.

Однако подлинное развитие науки о механическом движении началось с трудов великого итальянского физика Г. Галилея.

Кинематика - это раздел механики, изучающий способы описания движений и связь между величинами, характеризующими эти движения.

Описать движение тела - это значит указать способ определения его положения в пространстве в любой момент времени.

Уже на первый взгляд задача описания кажется очень сложной. В самом деле, взгляните на клубящиеся облака, колышущиеся листья на ветке дерева. Представьте себе, какое сложное движение совершают поршни автомобиля, мчащегося по шоссе. Как же приступить к описанию движения?

Самое простое (а в физике всегда идут от простого к сложному) - это научиться описывать движение точки. Под точкой можно понимать, например, маленькую отметку, нанесённую на движущийся предмет - футбольный мяч, колесо трактора и т. д. Если мы будем знать, как происходит движение каждой такой точки (каждого очень маленького участка) тела, то мы будем знать, как движется всё тело.

Однако когда вы говорите, что пробежали на лыжах 10 км, то никто не станет уточнять, какая именно часть вашего тела преодолела расстояние в 10 км, хотя вы отнюдь не точка. В данном случае это не имеет сколько- нибудь существенного значения.

Введём понятие материальной точки - первой физической модели реальных тел.

Материальная точка - тело, размерами и формой которого можно пренебречь в условиях рассматриваемой задачи.

Система отсчёта.

Движение любого тела, как мы уже знаем, есть движение относительное. Это значит, что движение данного тела может быть различным по отношению к другим телам. Изучая движение интересующего нас тела, мы обязательно должны указать, относительно какого тела это движение рассматривается.

Тело, относительно которого рассматривается движение, называется телом отсчёта .

Чтобы рассчитать положение точки (тела) относительно выбранного тела отсчёта в зависимости от времени, надо не только связать с ним систему координат, но и суметь измерить время. Время измеряют с помощью часов. Современные часы - это сложные устройства. Они позволяют измерять время в секундах с точностью до тринадцатого знака после запятой. Естественно, ни одни механические часы такой точности обеспечить не могут. Так, одни из самых точных в стране механических часов на Спасской башне Кремля в десять тысяч раз менее точны, чем Государственный эталон времени. Если эталонные часы не корректировать, то на одну секунду они убегут или отстанут за триста тысяч лет. Понятно, что в быту нет необходимости измерять время с очень большой точностью. Но для физических исследований, космонавтики, геодезии, радиоастрономии, управления воздушным транспортом высокая точность в измерении времени просто необходима. От точности измерения времени зависит точность, с которой мы сумеем рассчитать положение тела в какой-либо момент времени.

Совокупность тела отсчёта, связанной с ним системы координат и часов называют системой отсчёта .

На рисунке показана система отсчёта, выбранная для рассмотрения полёта брошенного мяча. В данном случае телом отсчёта является дом, оси координат выбраны так, что мяч летит в плоскости XOY, для определения времени берётся секундомер.

Механическим движением тела называют измене­ние его положения в пространстве относительно других тел с течением времени. Например, человек, едущий на эскалато­ре в метро, находится в покое относительно самого эскалатора и перемещается относительно стен тунне­ля

Виды механического движения:

  • прямолинейные и криволинейные — по форме траектории;
  • равномерные и неравномерные — по закону движения.

Механическое движение относительно. Это проявляется в том, что форма траектории, перемещение, скорость и другие характеристики движения тела зависит от выбора системы отсчета.

Тело, относительно которого рассматривается движение, называется телом отсчета . Система ко­ординат, тело отсчета, с которым она связана, и прибор для отсчета времени образуют си­стему отсчета , относительно которой и рассматривается движение тела.

Иногда размерами тела по сравнению с расстоянием до него можно пренебречь. В этих случаях тело считают материальной точкой.

Определение положения тела в любой момент времени является основной задачей механики .

Важными характеристиками движения являются траектория материальной точки, перемещение, скорость и ускорение. Линию, вдоль которой движется материальная точка, называют траекторией . Длина траектории называется путем (L). Единица измерения пути - 1м. Вектор, соединяющий начальную и конечную точки траектории, называется перемещением (). Единица изме­рения перемещения-1м .

Простейший вид движения равномерное прямолинейное движение. Движение, при котором тело за любые равные промежутки вре­мени совершает одинаковы перемещения, назы­вают прямолинейным равномерным движением. Скорость () - векторная физическая величина, характеризующая быстроту перемещения тела, чис­ленно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Определяющая формула скорости имеет вид v = s/t . Единица изме­рения скорости - м/с . Измеряют скорость спидометром.

Движение тела, при котором его скорость за любые промежутки времени изменяется одинаково, называют равноуско­ренным или равнопеременным.

физическая величина, характеризующая быстроту изменения скорости и численно равная отношению вектора изменения скорости за единицу времени. Единица ускорения в СИм/с 2 .

равноускоренным , если модуль скорости возрастает.— условие равноускоренного движения. Например, разгоняющиеся транспортные средства- автомобили, поезда и свободное падение тел вблизи поверхности Земли ( = ).

Равнопеременное движение называется равнозамедленным , если модуль скорости уменьшается. — условие равнозамедленного движения.

Мгновенная скорость равноускоренного прямолинейного движения

Подробности Категория: Механика Опубликовано 17.03.2014 18:55 Просмотров: 15360

Механическое движение рассматривают для материальной точки и для твёрдого тела.

Движение материальной точки

Поступательное движение абсолютно твёрдого тела - это механическое движение, в процессе которого любой отрезок прямой, связанный с этим телом, всегда параллелен самому себе в любой момент времени.

Если мысленно соединить прямой две любые точки твёрдого тела, то полученный отрезок всегда будет параллельным себе в процессе поступательного движения.

При поступательном движении все точки тела движутся одинаково. То есть, они проходят одинаковое расстояние за одинаковые промежутки времени и движутся в одном направлении.

Примеры поступательного движения: движение кабины лифта, чашек механических весов, санок, мчащихся с горы, педалей велосипеда, платформы железнодорожного состава, поршней двигателя относительно цилиндров.

Вращательное движение

При вращательном движении все точки физического тела движутся по окружностям. Все эти окружности лежат в плоскостях, параллельных друг другу. А центры вращения всех точек расположены на одной неподвижной прямой, которая называется осью вращения . Окружности, которые описываются точками, лежат в параллельных плоскостях. И эти плоскости перпендикулярны оси вращения.

Вращательное движение встречается очень часто. Так, движение точек на ободе колеса является примером вращательного движения. Вращательное движение описывает пропеллер вентилятора и др.

Вращательное движение характеризуют следующие физические величины: угловая скорость вращения, период вращения, частота вращения, линейная скорость точки.

Угловой скоростью тела при равномерном вращении называют величину, равную отношению угла поворота к промежутку времени, в течение которого этот поворот произошёл.

Время, за которое тело проходит один полный оборот, называется периодом вращения (T) .

Число оборотов, которые тело совершает в единицу времени, называется частотой вращения (f) .

Частота вращения и период связаны между собой соотношением T = 1/f.

Если точка находится на расстоянии R от центра вращения, то её линейная скорость определяется по формуле:

Сегодня мы поговорим о систематическом изучении физики и первом ее разделе - механике. Физика изучает разные виды изменений или процессов, происходящих в природе, а какие процессы в первую очередь интересовали наших предков? Конечно, это процессы, связанные с движением. Им было интересно, долетит ли копье, которое они бросили, и попадет ли оно в мамонта; им было интересно, успеет ли гонец с важной вестью добежать до заката к соседней пещере. Все эти виды движения и вообще механическое движение как раз и изучает раздел, который называется механика.

Куда бы мы ни посмотрели - вокруг нас масса примеров механического движения: что-то вращается, что-то прыгает вверх-вниз, что-то движется вперед-назад, а другие тела могут находиться в состоянии покоя, которое тоже является примером механического движения, скорость которого равна нулю.

Определение

Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени (рис. 1).

Рис. 1. Механическое движение

Как физика делится на несколько разделов, так и механика имеет свои разделы. Первый из них называется кинематика. Раздел механики кинематика отвечает на вопрос, как движется тело. Прежде чем начать работать над изучением механического движения, необходимо определить и выучить основные понятия, так называемую азбуку кинематики. На уроке мы научимся:

Выбирать систему отсчета для изучения движения тела;

Упрощать задачи, мысленно заменяя тело материальной точкой;

Определять траекторию движения, находить путь;

Различать виды движений.

В определении механического движения особое значение имеет выражение относительно других тел . Нам всегда необходимо выбрать так называемое тело отсчета, то есть тело, относительно которого мы будем рассматривать движение исследуемого нами объекта. Простой пример: подвигайте рукой и скажите - движется ли она? Да, конечно, по отношению к голове, но по отношению к пуговице на вашей рубашке она будет недвижима. Поэтому выбор отсчета очень важен, ведь относительно некоторых тел движение совершается, а относительно других тел движения не происходит. Чаще всего телом отсчета выбирают тело, которое всегда есть под руками, точнее под ногами, - это наша Земля, которая является телом отсчета в большинстве случаев.

Издавна ученые спорили о том, Земля ли вращается вокруг Солнца или Солнце вращается вокруг Земли. На самом деле, с точки зрения физики, с точки зрения механического движения это всего лишь спор о теле отсчета. Если телом отсчета считать Землю, то да - Солнце вращается вокруг Земли, если телом отсчета считать Солнце - то Земля вращается вокруг Солнца. Поэтому тело отсчета - это важное понятие.

Как же описывать изменение положения тела?

Чтобы точно задать положение интересующего нас тела относительно тела отсчета, надо связать с телом отсчета систему координат (рис. 2).

При движении тела координаты меняются, а для того чтобы описать их изменение, нам необходим прибор для измерения времени. Чтобы описывать движение, нужно иметь:

Тело отсчета;

Связанную с телом отсчета систему координат;

Прибор для измерения времени (часы).

Все эти объекты составляют вместе систему отсчета. До тех пор пока мы не выбрали систему отсчета, не имеет смысла описывать механическое движение - мы не будем уверены в том, как движется тело. Простой пример: чемодан, лежащий на полке в купе поезда, который движется, для пассажира просто покоится, а для человека, стоящего на перроне, движется. Как мы видим, одно и то же тело и движется, и покоится, вся проблема в том, что системы отсчета различны (рис. 3).

Рис. 3. Различные системы отчета

Зависимость траектории от выбора системы отсчета

Ответим на интересный и важный вопрос, зависит ли форма траектории и пройденный телом путь от выбора системы отсчета. Рассмотрим ситуацию, когда есть пассажир поезда, радом с которым на столе стоит стакан с водой. Какой же будет траектория стакана в системе отчета, связанной с пассажиром (телом отсчета является пассажир)?

Конечно, относительно пассажира стакан неподвижен. Это значит, что траектория является точкой, а перемещение равно (рис. 4).

Рис. 4. Траектория стакана относительно пассажира в поезде

Какой же будет траектория стакана относительно пассажира, который ожидает поезда на перроне? Для этого пассажира будет казаться, что стакан движется по прямой линии и у него ненулевой путь (рис. 5).

Рис. 5. Траектория стакана относительно пассажира на перроне

Из вышесказанного можно сделать вывод, что траектория и путь зависят от выбора системы отсчета.

Для того чтобы описывать механическое движение, в первую очередь необходимо определиться с системой отсчета.

Движение изучается нами для того, чтобыпредсказать, где окажется тот или иной объект в необходимый момент времени. Основная задача механики - определить положение тела в любой момент времени. Что же значит описать движение тела?

Рассмотрим пример: автобус едет из Москвы в Санкт-Петербург (рис. 6). Важны ли нам размеры автобуса по сравнению с расстоянием, которое он преодолеет?

Рис. 6. Движение автобуса из Москвы в Санкт-Петербург

Конечно же, размерами автобуса в данном случае можно пренебречь. Мы можем описывать автобус как одну движущуюся точку, по-другому ее называют материальной точкой.

Определение

Тело, размерами которого в данной задаче можно пренебречь, называют материальной точкой.

Одно и то же тело, в зависимости от условий задачи, может быть или не быть материальной точкой. При перемещении автобуса из Москвы в Санкт-Петербург автобус можно считать материальной точкой, ведь его размеры несопоставимы с расстоянием между городами. Но если в салон автобуса влетела муха и мы хотим исследовать ее движение, тогда в этом случае нам важны размеры автобуса, и он уже не будет являться материальной точкой.

Чаще всего в механике мы будем изучать именно движение материальной точки. При своем перемещении материальная точка последовательно проходит положение вдоль некоторой линии.

Определение

Линия, вдоль которой движется тело (или материальная точка), называется траекторией движения тела (рис. 7).

Рис. 7. Траектория точки

Иногда мы наблюдаем траекторию (например, процесс выставления оценки за урок), но чаще всего траектория - это какая-то воображаемая линия. При наличии средств измерения мы можем замерить длину траектории, вдоль которой двигалось тело, и определим величину, которая называется путь (рис. 8).

Определение

Путь , пройденный телом за некоторое время, - это длина участка траектории .

Рис. 8. Путь

Разделяют два основных вида движения - это прямолинейное и криволинейное движение.

Если траектория тела - это прямая линия, то движение называется прямолинейным. Если тело движется по параболе или по любой другой кривой - мы говорим о криволинейном движении. При рассмотрении движения не просто материальной точки, а движения реального тела различают еще два вида движения: поступательное движение и вращательное движение.

Поступательное и вращательное движение. Пример

Какие же движения называются поступательными, а какие - вращательными? Рассмотрим этот вопрос на примере колеса обозрения. Как движется кабина колеса обозрения? Отметим две произвольные точки кабины и соединим их прямой. Колесо вращается. Через некоторое время отметим те же точки и соединим их. Полученные прямые будут лежать на параллельных прямых (рис. 9).

Рис. 9. Поступательное движение кабины колеса обозрения

Если прямая, проведенная через любые две точки тела, при движении остается параллельной сама себе, то такое движение называют поступательным .

В противном случае мы имеем дело с вращательным движением. Если бы прямая не была параллельной сама тебе, то пассажир, скорее всего, вывалился бы из кабины колеса (рис. 10).

Рис. 10. Вращательное движение кабины колеса

Вращательным называют такое движение тела, при котором его точки описывают окружности, лежащие в параллельных плоскостях. Прямая, соединяющая центры окружностей, называется осью вращения .

Очень часто нам приходится сталкиваться с комбинацией поступательного и вращательного движения, так называемым поступательно-вращательным движением. Самый простой пример такого движения - это движение прыгуна в воду (рис. 11). Он выполняет вращение (сальто), но при этом центр его масс поступательно движется в направлении воды.

Рис. 11. Поступательно-вращательное движение

Мы сегодня изучили азбуку кинематики, то есть основные, самые важные понятия, которые в дальнейшем позволят нам перейти к решению главной задачи механики - определению положения тела в любой момент времени.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.
  1. Интернет-портал «Av-physics.narod.ru» ().
  2. Интернет-портал «Rushkolnik.ru» ().
  3. Интернет-портал «Testent.ru» ().

Домашнее задание

Подумайте, что является телом отсчета, когда мы говорим:

  • книга неподвижно лежит на столике в купе движущегося поезда;
  • стюардесса после взлета проходит по пассажирскому салону самолета;
  • Земля вращается вокруг своей оси.