Особенности извести: изготовление и применение. Применение гашеной и негашеной извести

Известь - белое кристаллическое вещество. Это общепринятое во всем мире понятие, условно объединяющее продукты обжига (и переработки впоследствии) мела, известняка и других карбонатных пород. Как правило, под словом «известь» имеется в виду известь негашеная и продукт взаимодействия ее с водой. Данный материал может быть в порошкообразном, молотом виде или в виде теста. Формула негашеной извести – СаО.

Смотрите так же:

СТРУКТУРА

Оксид кальция - белое кристаллическое вещество, кристаллизующееся в кубической гранецентрированной кристаллической решётке, по типу хлорида натрия. Точечная группа: m3m (4/m 3 2/m) — гексоктаэдрическая. Пространственная группа Fm3m (синтетическая). Сингония кубическая. Параметры ячейки a = 4.797Å. Объем элементарной ячейки V 110.38 ų (рассчитано по параметрам элементарной ячейки).

СВОЙСТВА

Молярная масса составляет 55,07 грамм/моль. Плотность равна 3,3 грамм/сантиметр³. Температура плавления равна 2570 градусов. Температура кипения составляет 2850 градусов. Молярная теплоёмкость (при стандартных условиях) равна 42.06 Дж/(моль·К). Энтальпия образования (при стандартных условиях) составляет -635 кДж/моль

Оксид кальция (формула CaO) – это основной оксид. Поэтому он может: – растворяться в воде (H 2 O) с выделением энергии. При этом образуется гидроксид кальция. Эта реакция выглядит так: CaO (оксид кальция) + H 2 O (вода) = Ca(OH) 2 (кальциевый гидроксид) + 63,7 кДж/моль; – реагировать с кислотами и кислотными оксидами. При этом образуются соли. Вот примеры реакций: CaO (кальциевый оксид) + SO 2 (сернистый ангидрид) = CaSO 3 (сульфит кальция) CaO (кальциевый оксид) + 2HCl (соляная кислота) = CaCl 2 (кальциевый хлорид) + H 2 O (вода).

МОРФОЛОГИЯ


Исходя из нюансов обработки обожженного материала, выделяют известь различных видов:
Комовая известь изготавливается в виде смеси разных по размеру кусков. Она состоит главным образом из оксидов кальция (преобладающая часть) и магния. Также в ее состав могут входить алюминаты, силикаты и ферриты магния или кальция, которые формируются при обжигании, и карбонат кальция. Функцию вяжущего ингредиента она не выполняет.
Молотую известь делают, перемалывая комовую известь, поэтому их состав практически идентичен. Она используется в негашеном виде. Это позволяет избежать появления отходов и ускорить затвердение. Изделия из нее имеют прекрасные прочностные свойства, они водостойки и отличаются высокой плотностью. Чтобы ускорить процесс затвердения материала, добавляют хлористый кальций, а чтобы замедлить застывание – серную кислоту или гипс. Это позволяет предупредить появление трещин после высыхания. Транспортируется молотая известь в герметичных емкостях из бумаги или металла. Хранить ее разрешается не больше 10-15 дней в сухих условиях.
Гидратная известь – высокодисперсное сухое соединение, формирующееся при гашении извести. В ее состав входят гидроксиды кальция и магния, карбонат кальция и иные примеси.
При добавлении жидкости в объеме, которого хватает, чтобы оксиды превратились в гидраты, образуется пластичная масса, имеющая название известкового теста.

ПРОИСХОЖДЕНИЕ

В прошлом для образования извести выполняли тепловую обработку известняка. В последние годы данный метод используется все реже, поскольку в результате реакции выделяется диоксид углерода. Альтернативным методом является термическое разложение кальциевых солей, содержащих кислород.

Первый этап – добыча известняка, которая проводится в карьере. Вначале порода дробится, сортируется, а потом обжигается. Обжиг производят в обжигательных печах, которые могут быть вращающимися, шахтными, напольными или кольцевыми.

В большинстве случаев применяются печи шахтного типа, которые функционируют на газе, пересыпным способом или с выносными топками. Наибольшую экономию дают устройства, которые работают пересыпным способом на антраците или тощем каменном угле. Объем производства с помощью таких печей – в районе 100 т в сутки. Их недостатком является высокая степень загрязнения топливной золой.

Получить более чистую известь можно в устройстве с выносной топкой, которое работает на дровах, буром угле или торфе, или в газовом устройстве. Однако мощность подобных печей значительно ниже.
Высшее качество у вещества, обработанного во вращающейся печи, но такие механизмы используются довольно редко. Печи кольцевого и напольного типа имеют невысокую мощность и требуют больших объемов топлива, поэтому на новых предприятиях их не устанавливают.

ПРИМЕНЕНИЕ


Свойства и структурные особенности извести способствуют его широкому применению во многих направлениях народного хозяйства. Основной сферой, в которых известь используется, является строительство и дизайн. Здания из известняка – достопримечательность не только Мальты. Пусть и не в таких количествах, но строения из осадочной породы есть и в других государствах. Так, в России из известняка возведены многие храмы, к примеру, Троицкий собор и Успенский собор Кремля в Москве, церковь Покрова на Нерли. Так же из извести делали известковый цемент, с помощью которого строили жилые дома, однако в настоящее время его перестали использовать, потому что дома накапливают сырость, если использовать цемент и извести.

Из известняка изготавливают не только стеновые блоки, но плиты для облицовки, мощения полов и тротуаров. Порода идет на фундаменты строений. Камень измельчается и добавляется в автодорожное покрытие. Правда, в ход оно идет лишь на трассах второй категории. Так называют дороги для особых нужд, не подвергающиеся постоянным нагрузкам. Известняк также используется в качестве сырья в мыловарении, полиграфии и производстве удобрений. В пищевой промышленности камень применяется в качестве фильтра при изготовлении сахара

В гидросооружения встраивают фильтры воды из известняка. Для этого используют камень пористой, а не кристаллической структуры. Кроме того, порода является составной бетона. Известняк нужен в стекольной промышленности. Здесь используют породу с преобладанием оксида кальция. Его должно быть не меньше 53-х процентов. Кальцит – минерал, известняк же – порода, то есть состав из множества минералов. Известняк называют мономинеральной породой. Это значит, что кальцита в ней всегда больше, чем других элементов, но это не значит, что он единственный.

В пищевой промышленности зарегистрирован в качестве пищевой добавки E-529.

Известь (англ. Lime) — CaO

КЛАССИФИКАЦИЯ

ОПТИЧЕСКИЕ СВОЙСТВА

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА

Точечная группа m3m (4/m 3 2/m) — гексоктаэдрический
Пространственная группа F m3m
Сингония кубическая
Параметры ячейки a = 4.797Å

Это материал, обладающий свойствами вяжущего, который получается в результате обжига с последующей обработкой карбонатных горных пород. В их числе: известково-магнезиальные ископаемые, известняк, мел. Известь, в разных своих проявлениях, используется практически во всех областях деятельности человека, в том числе в строительной отрасли.

В чистом виде она представляет собой бесцветное вещество, которое довольно плохо растворяется в воде. Состоит из двух основных компонентов: СаО и MgO. Известны следующие виды извести:

  • Гашеная имеет формулу Ca(OH)2. В свою очередь подразделяется на гидратную или пушенку и известковое тесто.
  • Негашеная - СаО. Зависимо от способа обработки после обжига вырабатывают известь комовую или молотую.
  • Формула извести хлорной - Ca(Cl)OCl. Эта разновидность является превосходным дезинфицирующим средством.
  • Натровая состоит из гашёной извести и каустической соды (гидроксида натрия) NaOH. Имеет специфическое значение и применяется в основном там, где необходима нейтрализация углекислого газа.

В строительной сфере и производстве строительных материалов применяются все модификации гашеной и негашеной извести.

Как правильно гасить известь

Гашеная известь есть в продаже в строительных магазинах, но ее можно приготовить и самостоятельно. Сначала надо разобраться, что это такое гашеная известь. Этот материал получают путем обработки водой комовой негашеной известки.

Важно! Известь является едким веществом, нельзя допускать ее попадания на кожу, в глаза. Поэтому работать с ней следует с применением личных защитных средств: перчаток, очков, респиратора, прочной спецодежды.

Для работы необходимо приготовить емкость достаточного объема, без коррозии. На производствах используют специальные ямы. Нужна будет комовая негашеная известь и приспособление для перемешивания. Можно использовать удобную деревянную палку, подойдет даже черенок от лопаты. Далее:

  • В приготовленную емкость укладывают необходимое количество исходного материала.
  • Заливают его ХОЛОДНОЙ водой в соотношении 1:1. При первоначальном взаимодействии с водой известь ведет себя очень бурно и сильно нагревается. В этот момент особенно нужно помнить о правилах безопасности.
  • Негашеная известь от разных производителей, изготовленная из различного сырья, может отличаться свойствами. Поэтому заливку ее водой лучше выполнять в несколько приемов, чтобы обеспечить равномерное гашение.
  • В первые полчаса состав необходимо постоянно перемешивать. Затем емкость нужно закрыть и оставить в покое не менее, чем на две недели. Практика показывает, что чем дольше выдержка - тем качественнее получается пушонка.

Готовить пушонку лучше всего на открытом воздухе, так как гасить известь в домашних условиях, в помещении вредно для здоровья и небезопасно. Непосредственно перед употреблением консистенция гашеной извести может потребовать дополнительного разведения.

Самый простой способ определения готовности смеси - это по следу на палке. Если при перемешивании пушонки на ней остается явный след белого цвета , то состав готов. Как развести известь до нужной плотности? Просто добавить воды и тщательно перемешать. После того, как прошел процесс гашения, материал уже не так опасен.

После приготовления гашеной извести при первой заливке водой обязательно остаются непогашенные кусочки. Они могут образовываться в результате неполного обжига или, наоборот, пережога. Так вот их сразу выбрасывать не стоит. Надо опять залить чистой водой и использовать по назначению. А уже после вторичной обработки - утилизировать.

В чем отличие гашеной извести от негашеной

Обожженный известняк моментально вступает в химическую реакцию с водой, поэтому как вяжущее в чистом виде его использовать нельзя. Однако свое применение негашеная известь нашла при изготовлении шлакобетона, красящих составов, силикатного кирпича, ячеистого и тяжелого силикатного бетона. Без нее трудно обойтись в процессе очистки сточных вод и дымовых газов . Негашеная известь служит отличным удобрением для снижения кислотности почвы и увеличения ее плодородности.

Основная разница извести гашеной и негашеной заключается в их составе и свойствах. Процедура гашения превращает оксид кальция в гидроксид, совершенно меняя характеристики исходного материала. В результате можно получить:

  • гидроксид кальция в сухом виде (пушонку);
  • известковое тесто;
  • известковое молоко;
  • известковую воду.

Область применения гашеной извести в строительном производстве и отделочных работах достаточно широка. Приготовление кладочных, штукатурных растворов, силикатного бетона на основе извести делает их особенно пластичными и удобоукладываемыми. Кроме того, ее используют в качестве побелочного материала, а также в производстве хлорной извести, в кожевенной и пищевой промышленности.

Условия безопасного хранения гашеной извести

В отличие от негашеной, гашеная строительная известь может храниться очень долго, не меняя своего состава и свойств. Но при соблюдении определенных правил.

  • Хранить материал следует при положительных температурах наружного воздуха.
  • Если гашеная известь хранится в уличной яме, то на зиму ее надо покрыть слоем песка, толщиной 200 мм, а сверху засыпать 700 мм грунта.
  • Можно для укрытия использовать теплоизоляционные материалы, при наличии.

Известь это материал с высокой степенью влагопоглощения, поэтому при замораживании может терять связующие свойства и способность хорошо сцепляться с другими материалами. Это важный повод для обеспечения нормальных условий хранения.

Первая помощь при ожогах известью

Если все-таки меры предосторожности при гашении не помогли и известь попала на кожу, то меры нужно принимать незамедлительно. При ожогах негашеной известью необходимо освободить пострадавшего от испачканной одежды, сухой салфеткой или ветошью убрать вещество с пораженного участка. Тщательно обмыть это место большим количеством проточной воды. Затем обработать 2% раствором борной кислоты и наложить повязку из стерильного материала с синтомициновой мазью или бальзамом Вишневского. И немедленно обратиться за помощью в медицинское учреждение.

Гидрат извести (пушонка, гашеная известь), формула которой - Са (ОН)2, не требует особых условий хранения. Материал допускается держать на открытом пространстве. Необходим только навес, защищающий его от осадков.

Для полного гашения пятидесяти шести килограмм извести в порошок следует израсходовать порядка сорока литров воды, что составляет около шестидесяти девяти процентов от объема взятой извести. В том случае, если взято меньше жидкости, то процесс будет неполным.

Если гашеная известь производится в замкнутом пространстве, а не имеет возможности удаляться при этом, то процесс будет полным и при использовании меньшего количества жидкости. Однако при этом количество воды должно быть приближено к теоретически нужному.

При соприкосновении с Н2О, "кипелка" (то, из чего делают известь) начинает ее впитывать. В процессе сырье растрескивается, рассыпаясь постепенно в мельчайший порошок. При этом отмечается образование тепла в большом количестве.

Чем известь чище, тем полнее и быстрее она рассыпается в процессе гашения. В результате получается порошок пушонки более нежный и объемистый. Гашеная известь имеет объем в три-три с половиной раза больший, нежели исходное сырье. Данное увеличение происходит с достаточно большой силой. Этим фактором пользуются, например, при раскалывании камней. Следует, однако, сказать, что такое сильное увеличение становится возможным благодаря разрыхлению вещества, то есть становится больше общий объем пор.

Гашеная известь производится, как правило, в заводских условиях. Наиболее распространен способ, при котором кучу, сформированную из кусков "кипелки", на досчатой платформе либо утрамбованной площадке начинают поливать водой, обсыпая слоем песка. Песок необходим для задержания водяных паров.

Еще одним, экономически менее выгодным и потому реже применяемым способом получения является метод погружения в воду. Куски "кипелки" при этом складывают в корзины (железные либо сплетенные из прутьев ивы) и опускают в Н2О. Держат сырье до того момента, как вода не начнет белеть. Следует сказать, что данный способ весьма трудоемок.

Наиболее совершенным считается способ превращения исходного сырья в порошок при помощи воздействия на него горячего пара. Для гашения таким методом используют железный котел, достаточно прочный и с закрываемой плотно горловиной. Емкость оснащается манометром и В котел насыпается необходимое количество сырья, учитывая увеличение объема в результате. Затем вливают воду в нужном количестве и, герметически закрыв емкость, начинают ее вращать. Так, ускоряется процесс рассыпания. Под воздействием большого давления температура в котле повышается до ста градусов. Гашение в результате осуществляется полно и быстро.

Гашеная известь плохо растворяется в воде. При смешивании песка и известкового теста получается раствор, который достаточно широко применяется в совершении отделочных, в частности,

Известь для почвы- важная составляющая высокой плодородности. Около 10 млн. га пахотных земель на Украине обладают повышенной кислотностью, в то время как для роста, развития и вызревания большинства культур подходит слабокислая или нейтральная среда. Эффективный способ увеличения продуктивности почв с повышенной кислотностью - известкование.

Общая информация и основные характеристики

Известь представляет собой вяжущий материал, который получают в результате обжига и дальнейшей обработки мела, известняка и прочих известково-магнезиальных горных пород. Термин в переводе в греческого означает «неугасимый».

Материал состоит из смеси оксида кальция CaO и магния MgO. Известь применяется в черной металлургии, строительной, целлюлозно-бумажной промышленности, сфере химической индустрии и сельском хозяйстве.

Признается экологически чистым, безопасным материалом, хорошо переносится аллергиками. Но при гашении вещества появляется вероятность получения ожогов, вредного воздействия выделяемых паров на слизистые органов дыхания и глаз. При работе с материалом важно соблюдать технику безопасности.

Разновидности

Различают виды извести:

  • негашеная известь (формула CaO);
  • гашеная известь (формула Ca(OH)2);
  • натровая известь (получают путем смешивания гашеной извести Ca(OH)2 и NaOH);
  • хлорная известь (формула Ca(Cl)OCl).

Негашеная известь («кипелка») отличается своим белоснежным цветом. Вещество бурлит при вступлении в реакцию с водой с выделением большого количества тепла. Чаще применяется в строительной индустрии, металлургии, сахарном производстве. В пищевой сфере известна как пищевая добавка Е529.

Негашеная известь нашла свое применение и в «самогреющей» посуде. Между двумя стенками стакана помещают контейнер с малым количеством оксида кальция, после прокалывания резервуара с водой происходит реакция, в ходе которой выделяется тепло.

Гашеная известь (гидратная, «пушонка») - белый порошок, плохо подверженный растворению в воде. Сфера применения обширна: строительная индустрия, производство известковых удобрений , нейтрализация почв с повышенной кислотностью, умягчение воды, стоматологическая индустрия, садоводство, текстильная отрасль и другие. В пищевой индустрии известна в роли пищевой добавки Е526.

Натровая известь имеет вид белой пористой массы, служит для поглощения углекислого газа и воды (лишней влаги из воздуха). Применяется в водолазном снаряжении, противогазах, в аппаратах искусственной вентиляции легких, в лабораторном оборудовании.

Раствор хлорной извести более известен как «хлорка». Сфера применения: дезинфекция и отбеливание.

Особенности применения извести

Для умеренной зоны существует необходимость в известковании кислотных почв из-за их физико-химического состава. Без внесения извести развивается эрозия, происходит истощение почвы и уменьшение урожайности.

Признаки закисления:

  • белесый оттенок почвы;
  • плохой рост люцерны, клевера, озимой пшеницы;
  • выраженный подзолистый горизонт (около 10 см);
  • развитие сорняков - пикульника, щавельника, лютика ползучего, белоуса.

Эффект от использования заключается в нейтрализации избыточного уровня почвенной кислотности. Содержание кальция - залог эффективного роста растений. Он активизирует плодородие, повышая доступность питательных веществ для возделываемых культур. Взаимодействуя с железом и алюминием, известь служит катализатором разложения органики, высвобождения азота и деятельности микроорганизмов прикорневой области.

Применение в сельском хозяйстве помогает обеспечить растения микроэлементами, улучшить структуру почв. Для внесения подходит любо время года, лучше - под зиму. Оптимальная периодичность внесения - ежегодно.

Чувствительностью к уровню кислотности отличаются культуры: кормовая и сахарная свекла, люцерна, горох, капуста, пшеница, ячмень, подсолнечник, бобовые культуры и другие. Урожайность на кислых почвах может уменьшиться на 15-20%.

Нормы внесения:

  • для песчаного типа почвы или легкого суглинка - 250-400 г/кв.м.;
  • для среднего или тяжелого суглинка - 350-600 г/кв.м.

При внесении извести в почву происходит увеличение урожайности озимой пшеницы до 5,5 ц/га, картофеля до 20 ц/га, многолетних трав до 10 ц/га, сахарной свеклы до 50 ц/га. Применение известковых удобрений повышает содержание витаминов в сене, зерне, силосе, крахмала в картофеле, сахара в корнеплодах. Кормление животных полученными кормами снижает уровень заболеваемости молодняка, увеличивает прирост.

Известь отличается от прочих удобрений низкой ценой. Эффект от ее внесения сохраняется в течение 5-20 лет и зависит от состава почвы и вносимой дозы.

Форма выпуска и цена извести в Украине

Гидратную известь выпускают в форме порошка, известкового теста, известкового молока:

  • Гидратная известь (пушонка) - тонкодисперсный порошок светлого цвета.
  • Известковое тесто - тестообразная пластичная масса, состоит из гидратной извести и воды.
  • Известковое молоко - водная суспензия молочного цвета.

Ориентировочная цена по Украине составляет 900-2600 грн/т, зависит от упаковки и объема.

Транспортировка и хранение

Гашеная известь для сельского хозяйства транспортируется автомобильным, железнодорожным видами транспорта. Расфасовку удобрения производят в бумажные мешки, а в нефасованном виде применяют специальные емкости. Желательно использовать крытый кузов или вагон. При транспортировке под открытым воздухом известь подлежит дополнительной защите от воздействия атмосферных осадков.

По классу опасности материал относят к группе малоопасных веществ. Хранение организуется в помещениях с вентиляцией и защитой от попадания влаги.

Производители

ООО «Укрспецизвесть», ПАО «Днепразот», ЧАО «Индустрия» и пр.

ОПРЕДЕЛЕНИЕ

Гашеная известь (гидроксид кальция) в обычных условиях представляет собой порошок белого цвета, которые разлагаются без плавления при нагревании (рис. 1).

Плохо растворяется в воде (образуется разбавленный щелочной раствор). Проявляет основные свойства, реагирует с кислотами. Поглощает углекислый газ из воздуха.

Рис. 1. Гашеная известь. Внешний вид.

Раствор гашеной извести в воде называется известковой водой.

Химическая формула гашеной извести

Химическая формула гашеной извести Ca(OH) 2 . Она показывает, что в состав данной молекулы входят один атом кальция (Ar = 40 а.е.м.), два атома водорода (Ar = 1 а.е.м.) и два атома кислорода (Ar = 16 а.е.м.). По химической формуле можно вычислить молекулярную массу гашеной извести:

Mr(Ca(OH) 2) = Ar(Ca) + 2×Ar(H) + 2×Ar(O);

Mr(Ca(OH) 2) = 40 + 2×1 + 2×16 = 40 + 2 + 32 = 74

Графическая (структурная) формула гашеной извести

Структурная (графическая) формула гашеной извести является более наглядной. Она показывает то, как связаны атомы между собой внутри молекулы (рис. 2).

Рис. 2. Графическая формула гашеной извести.

Ионная формула

Гашеная известь является двухкислотным основанием, которое способно диссоциировать на ионы в водном растворе согласно следующему уравнению:

Ca(OH) 2 ↔ Ca 2+ + 2OH -

Примеры решения задач

Задание Определите молекулярную формулу соединения, содержащего 49,4% калия, 20,2% серы, 30,4% кислорода, если относительная молекулярная масса этого соединения в 3,95 раза больше относительной атомной массы кальция.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%

Обозначим количество моль элементов, входящих в состав соединения за «х» (калий), «у» (сера) и «z» (кислород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y:z = ω(K)/Ar(K) : ω(S)/Ar(S) : ω(O)/Ar(O);

x:y:z= 49,4/39: 20,2/32: 30,4/16;

x:y:z= 1,3: 0,63:1,9 = 2: 1: 3

Значит простейшая формула соединения калия, серы и кислорода будет иметь вид K 2 SO 3 и молярную массу 158 г/моль.

Найдем истинную молярную массу этого соединения:

M substance = Ar(Ca) × 3,95 = 40 × 3,95 = 158 г/моль

M substance / M(K 2 SO 3) = 158 / 158 = 1

Значит формула соединения калия, серы и кислорода имеет вид K 2 SO 3 .

Ответ K 2 SO 3
Задание Определите молекулярную формулу кальциевой селитры, в которой массовые отношения кальция, азота и кислорода равны 10:7:24. Относительная молекулярная масса кальциевой селитры 164.
Решение Для того, чтобы узнать, в каких отношениях находятся химические элементы в составе молекулы необходимо найти их количество вещества. Известно, что для нахождения количества вещества следует использовать формулу:

Найдем молярные массы кальция, азота и кислорода (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел). Известно, что M = Mr, значит M(Ca)= 40 г/моль, Ar(N)=14 г/моль, а М(O) = 32 г/моль.

Тогда, количество вещества этих элементов равно:

n (Ca) = m (Ca) / M (Ca);

n (Ca) = 10 / 40 = 0,25 моль

n (N) = m (N) / M (N);

n (N) = 7 / 14 = 0, 5 моль

n (O) = m (O) / M (O);

n (O) = 24 / 16 = 1,5 моль

Найдем мольное отношение:

n(Ca) :n(N):n(O) = 0,25: 0,5: 1,5= 1: 2: 6,

т.е. простейшая формула соединения кальция, азота и кислорода имеет вид CaN 2 O 6 и молярную массу 164 г/моль

Чтобы найти истинную формулу органического соединения найдем отношение полученных молярных масс:

M substance / M(CaN 2 O 6) = 164 / 164 = 1

Значит формула соединения кальция, азота и кислорода имеет вид CaN 2 O 6 или Ca(NO 3) 2 . Это нитрат кальция.

Ответ Ca(NO 3) 2

Известь - греческое слово, которое имеет свое значение. В дословном переводе оно означает «негасимый». Это один из тех материалов, которые существуют с незапамятных времен. Его уже давно человечество использует в своих целях. Как ни странно, его свойства определили совершенно случайно. А вот начали применять материал во многих сферах, посредством ошибок и проб, можно сказать, вслепую. Известь - универсальный материал, который используется и сегодня.

За счет своих свойств, материал употребляется в разных промышленностях, которые отличаются друг от друга. В этой статье мы рассмотрим, как добывают материал, чем отличается гашеная известь от негашеной и в каких областях ее применяют.

История возникновения материала

В древние времена, когда люди еще ничего не понимали относительно кальция и его соединений с кислородом и углем, они кое-что сообразили. Что именно? Путем «научного тыка» было выяснено, что известняк обладает отличными свойствами, особенно в качестве строительного материала. Кроме того, если обжечь некоторые горные породы, такие как тот же известняк, доломит, мел и т. д., то получится вещество, обладающее связующими свойствами.

Если вспомнить историю древнего Китая, то цементом из известняка работники стабилизировали почву и делали кладку своей знаменитой Великой Китайской стены. Ее длина составляет 2500 км. Удивительно то, что она уцелела до наших дней, и сегодня мы можем лицезреть ее величие. С течением времени, известь стала ключевым компонентом для приготовления удобрений, которые применяются в сельском хозяйстве.

Различают два вида материала: гашеная и негашеная известь. Как получается тот или иной вид? Какова между ними разница? Давайте узнаем ответы на эти вопросы.

Производство сырья

Нам уже известно, что известь - это продукт горной породы. Его добывают путем обжига в специальных печах из известняка, доломита и мела. На выходе получается материал в виде белых комков, или как его еще называют - комовая «кипелка». Это и есть негашеная известь. Процесс добычи происходит на специальных фабриках, откуда известь доставляется дальше. «Кипелка» - первоначальный продукт, из которого дальше будет произведены другие виды. Химическая формула материала - CaO (оксид кальция).

Готовое после обжига сырье не используется для растворов и цемента, так как обладает способностью очень сильно абсорбировать влагу, а также способствует образованию на стенах грибковой плесени. Все же, кипелка довольно востребована в строительной промышленности, а именно для изготовления шлакобетона, силикатного кирпича, красящих веществ и смесей для штукатурки.

В зависимости от времени, за которое можно гасить комовую «кипелку», ее делят на 3 вида. Первый из них - быстрогасящаяся известь. Время, которое необходимо для ее погашения - до 8 минут. Второй вид - среднегасящаяся, которая доходит за 25 минут. Ну и последний вид - медленногасящаяся, которой необходимо 25 минут и больше, чтобы дойти до кондиции. Вот так плавно мы перешли к другому виду материала - гашеной извести.

Известь гашеная

Отличия гашеной и негашеной извести, в чем они выражаются? Само название уже показывает, в чем же разница между материалами. Если обычное сырье имеет формулу CaO, то гашеный материал получается в результате добавления воды: CaO + H 2 O = Ca(OH) 2 . В этом заключается процесс гашения. Примечательно, что при смешивании сырья с водой происходит бурная реакция, при которой выделяется огромное количество тепла и дыма. Вода буквально закипает. Вот поэтому и комовую известь называют «кипелкой». На выходе получается гидратная пушонка.

Из комовой «кипелки» можно получить разные подвиды: молотую негашеную, гидратную пушонку, известняковое тесто или молоко. В зависимости от количества добавляемой для гашения воды, получается тесто или молоко. Например, для получения известнякового теста, жидкости для реакции требуется в 3-4 раза больше, чем самого материала. А если нужно получить известняковое молоко, то количество жидкости увеличивается в 8-10 раз.

Как произвести гашеную пушонку

Для производства гашеной извести, нужно соблюдать некоторые правила. Дегидратацию (процесс гашения) требуется проводить на открытом воздухе. Само сырье нужно поместить в резервуар или емкость. Так как в процессе будет выделяться довольно большое количество пара, нужно защитить себя. Сам материал тоже может причинить вред человеку и даже обжечь кожу. Вот почему требуется защитить кожу рук и всего тела, глаза и дыхательные пути. Вам никак не обойтись без костюма или специальной одежды, перчаток, очков и респиратора. Тогда все пройдет безопасно для вашего здоровья.

Важно помнить, что спешка в этом деле не нужна. Качества негашеной извести могут разниться, одна гасится быстро, другая долго. Если не довести все дело до конца, то возможно такое, что материал будет дымиться в готовой только сделанной штукатурке. Когда вы используете медленногасящуюся известь, то сразу заливать ее водой не рекомендуется. Лучше делать это небольшими порциями. Среднюю и быстрогасящуюся заливают до тех пор, пока пар полностью не исчезнет, чтобы не допустить перегорания.

Обратите внимание! Свежегашеная известь может иметь остатки исходного материала. Их гасят повторно, после чего удаляют.

После дегидратации количество извести будет больше. Из 1 кг негашеного материала можно получить 2 и больше. Известь гашеная и негашеная разница налицо. Но где используют эти материалы?

Применение в строительстве

Основной областью, в которой применяют гашеную и негашеную известь - является строительство. Известь - прекрасный вяжущий материал. Одно из его преимуществ - экологическая чистота и натуральность. Он совершенно невредный для человека. Немного о применении негашеного сырья мы уже говорили, но это не все аспекты. Она необходима для изготовления сухой строительной смеси, раствора и штукатурного состава. Кроме того, за счет добавления извести в бетонные изделия, они становятся гораздо прочнее, влагоустойчивее и плотнее.

Ее применение.

Гашеная известь (формула – Ca(OH)2) является сильным основанием. Может часто встречаться в некоторых источниках под названием гидроксида кальция или "пушонки".

Свойства: Представлена белым порошком, который мало растворим в воде. Чем меньше температура среды, тем меньше растворимость. Продуктами его реакции с кислотой являются соответствующие соли кальция. Например, при опускании гашеной извести в серную кислоту получатся сульфат кальция и вода. Если оставить раствор "пушонки" на воздухе, то она будет взаимодействовать с одной из составляющих последнего – углекислым газом. При данном процессе раствор мутнеет. Продукты этой реакции представлены карбонатом кальция и водой. Если продолжать барботацию углекислого газа, реакция закончится образованием гидрокарбоната кальция, который разрушается при повышении температуры раствора. Гашеная известь и угарный газ будут взаимодействовать при t около 400оС, его продуктами станут уже известный карбонат и водород. Вещество может реагировать и с солями, но только в том случае, если процесс закончится выпадением осадка, например, если смешать "пушонку" с сульфитом натрия, то продуктами реакции станут гидроксид натрия и сульфит кальция.

Из чего делают известь: Само название "гашеная" уже говорит о том, что для получения этого вещества что-то погасили. Как всем известно, любое химическое соединение (да и вообще что-либо) обычно гасят водой. А ей есть с чем реагировать. В химии существует вещество с названием "негашеная известь". Так вот, добавляя к ней воду, получают искомое соединение.

Применение: Гашеную известь используют для побелки любого помещения. Также с ее помощью смягчают воду: если добавить "пушонку" к гидрокарбонату кальция, то образуется оксид водорода и нерастворимый осадок – карбонат соответствующего металла. Гашеную известь применяют в дублении кож, каустификации карбонатов натрия и калия, получении соединений кальция, различных органических кислот и множества других веществ.

С помощью раствора "пушонки" – небезызвестной известковой воды – можно обнаружить наличие углекислого газа: при реакции с ним она мутнеет (фото). Стоматология не может обойтись без обсуждаемого сейчас гидроксида кальция, ведь благодаря ему в этой отрасли медицины можно дезинфицировать корневые каналы зубов. Также с помощью гашеной извести делают известковый строительный раствор, смешивая ее с песком. Подобная смесь использовалась еще в древние времена, тогда без нее не обходилась ни одна строительная кладка. Однако сейчас из-за ненужного выделения воды при реакции "пушонки" с песком данный раствор успешно заменяют цементом. С помощью гидроксида кальция производят известковые удобрения, также он является пищевой добавкой E526… И еще многие отрасли не могут обойтись без его использования.

Негашеная известь – Негашеная известь (неочищенный оксид кальция) получается кальцинированием известняка, содержащего очень мало глины или не содержащего ее совсем. Она очень быстро соединяется с водой, выделяя значительное количество тепла и образуя гашеную известь (гидроксид кальция).

Известь негашеная имеет множество полезных свойств, за счет этого находит широкое применение в строительстве, промышленности сельском хозяйстве.

Свойства: мелкопористые куски СаО размером 5…10 см, получаемые после обжига сырья, средняя плотность 1600…1700 кг/м3.
В зависимости от содержания оксида магния воздушную известь разделяют на кальциевую (70…90 % СаО и до 5 % МО), магнезиальную (до 20% М§0) и высокомагнезиальную или доломитовую (М§0 от 20 до 40 %).
Негашеную воздушную известь выпускают трех сортов. В зависимости от времени гашения извести всех сортов различают: быстрогасящуюся известь (время гашения до 8 мин); среднегасяющуюся (до 25 мин), медленногасящуюся (свыше 25 мин).

Строительная воздушная известь разделяется на три сорта.
Плотность негашеной извести колеблется в пределах 3,1-3,3 г/см3 и зависит главным образом от температуры обжига, наличия примесей, недожога и пережога.
Плотность гидратной извести зависит от степени ее кристаллизации и равна для Са(ОН)2, кристаллизованной в форме гексагональных пластинок, 2,23, аморфной - 2,08 г/см3.
Объемная масса комовой негашеной извести в
куске в большой мере зависит от температуры обжига и возрастает с 1,6 г/см3 (известь, обожженная при температуре 800° С) до 2,9 г/см3 (длительный обжиг при температуре 1300° С).
Объемная масса для других видов извести следующая: для молотой негашеной извести в рыхлонасып-ном состоянии 900-1100, в уплотненном 1100-1300 кг/м3; для гидратной извести (пушёнки) в рыхлонасыпном состоянии - 400-500, в уплотненном 600-700 кг/м3; для известкового теста-1300-1400 кг/м3.
Пластичность, обусловливающая способность вяжущего придавать строительным растворам и бетонам удо-бообрабатываемость, -важнейшее свойство извести. Пластичность извести связана с ее высокой водоудержи-вающей способностью. Тонкодисперсные частички гидрата окиси кальция, адсорбционно удерживая на своей поверхности значительное количество воды, создают своеобразную смазку для зерен заполнителей в растворной или бетонной смеси, уменьшая трение между ними. Вследствие этого известковые растворы обладают высокой удобообрабатываемостью, легко и равномерно распределяются тонким слоем на поверхности кирпича или бетона, хорошо сцепляются с ними, отличаются водо-удерживающей способностью даже при нанесении на кирпичные и другие пористые основания.

Применение: Данное вещество достаточно широко используется в разных сферах человеческой деятельности. К наиболее крупным потребителям следует отнести: черную металлургию, сельское хозяйство, сахарную, химическую, целлюлозно-бумажную промышленность. Используется СаО и в строительной индустрии. Особое значение соединение имеет в сфере экологии. Известь используется для очистки от оксида серы дымовых газов. Соединение также способно смягчать воду и осаждать присутствующие в ней органические продукты и вещества. Кроме того, применение негашеной извести обеспечивает нейтрализацию природных кислых и сточных вод. В сельском хозяйстве при контакте с почвами соединение устраняет кислотность, вредную для культурных растений. Известь негашеная обогащает грунт кальцием. За счет этого повышается обрабатываемость земли, ускоряется гниение гумуса. Вместе с этим сокращается необходимость внесения азотных удобрений в больших дозах.

Гидратная смесь применяется в птицеводстве и животноводстве для подкормки. Так устраняется недостаток кальция в рационе. Кроме того, соединение используют для улучшения общих санитарных условий при содержании и разведении скота. В химической промышленности гидратная известь и сорбенты применяются для получения фторида и гидрохлорида кальция. В нефтехимической промышленности соединение нейтрализует кислые гудроны, а также выступает в качестве реагента в основном неорганическом и органическом синтезе. Достаточно широко используется известь в строительстве. Это обусловлено высокой экологичностью материала. Смесь используют при приготовлении вяжущих материалов, бетонов и растворов, производства изделий для строительства.

Коррозия металлов и способы защиты от коррозии

Коррозия металлов - процесс разрушения металлов и сплавов вследствие химического или электрохимического взаимодействия с внешней средой, в результате которого металлы окисляются и теряют присущие им свойства. Коррозия - враг металлических изделий. Ежегодно в мире в результате коррозии теряется 10…15% выплавляемого металла, или 1… 1,5% всего металла, накопленного и эксплуатируемого человеком.

Химическая коррозия - разрушение металлов и сплавов в результате окисления при взаимодействии с сухими газами при высоких температурах или с органическими жидкостями - нефтепродуктами, спиртом и т. п.

Электрохимическая коррозия - разрушение металлов и сплавов в воде и водных растворах. Для развития коррозии достаточно, чтобы металл был просто покрыт тончайшим слоем адсорбированной воды (влажная поверхность). Из-за неоднородности строения металла при электрохимической коррозии в нем образуются гальванические пары (катод - анод), например между зернами (кристаллами) металла, отличающимися один от другого химическим составом. Атомы металла с анода переходят в раствор в виде катионов. Эти катионы, соединяясь с анионами, содержащимися в растворе, образуют на поверхности металла слой ржавчины. В основном металлы разрушаются от электрохимической коррозии.

Коррозия металлов наносит большой экономический ущерб, вследствие коррозии выходят из строя оборудование, машины, механизмы, разрушаются металлические конструкции. Особенно сильно подвержен коррозии оборудования, контактирующего с агрессивной средой, например растворами кислот, солей.

При обычных условиях металлы могут вступать в химические реакции с веществами, содержащимися в окружающей среде, – кислородом и водой. На поверхности металлов появляются пятна, металл становится хрупким и не выдерживает нагрузок. Это приводит к разрушению металлических изделий, на изготовление которых было затрачено большое количество сырья, энергию и количество человеческих усилий.
Коррозией называют самопроизвольное разрушение металлов и сплавов под воздействием окружающей среды.
Яркий пример коррозии – ржавчина на поверхности стальных и чугунных изделий. Ежегодно из-за коррозии теряют около четверти всего производимого в мире железа. Затраты на ремонт или замену судов, автомобилей, приборов и коммуникаций, водопроводных труб во много раз превышают стоимость металла, из которого они изготовлены. Продукты коррозии загрязняют окружающую среду и негативно влияют на жизнь и здоровье людей.
Химическая коррозия происходит в различных химических производствах. В атмосфере активных газов (водорода, сероводорода, хлора), в среде кислот, щелочей, солей, а также в расплавах солей и других веществ происходят специфические реакции с привлечением металлических материалов, из которых сделаны аппараты, в которых осуществляется химический процесс. Газовая коррозия происходит при повышенных температурах. Под ее влияние попадают арматура печей, детали двигателей внутреннего сгорания. Электрохимическая коррозия происходит, если металл содержится в любом водном растворе.
Наиболее активными компонентами окружающей среды, которые действуют на металлы, является кислород О2, водяной пар Н2О, карбон (IV) оксид СО2, серы (IV) оксид SО2, азота (IV) оксид NО2. Очень сильно ускоряется процесс коррозии при контакте металлов с соленой водой. По этой причине корабли ржавеют в морской воде быстрее, чем в пресной.
Суть коррозии заключается в окислении металлов. Продуктами коррозии могут быть оксиды, гидроксиды, соли и т.д. Например, коррозии железа можно схематично описать следующим уравнением:
4Fe + 6H2O + 3O2 → 4Fe (OH) 3.
Остановить коррозию невозможно, но ее можно замедлить. Существует много способов защиты металлов от коррозии, но основным приемом является предотвращение контакта железа с воздухом. Для этого металлические изделия красят, покрывают лаком или покрывают слоем смазки. В большинстве случаев этого достаточно, чтобы металл не разрушался в течение нескольких десятков или даже сотен лет. Другой способ защиты металлов от коррозии электрохимическое покрытие поверхности металла или сплава другими металлами, устойчивых к коррозии (никелирование, хромирование, оцинковка, серебрение и золочение). В технике очень часто используют специальные коррозионностойкие сплавы. Для замедления коррозии металлических изделий в кислой среде также используют специальные вещества – ингибиторы.

Жизнь и деятельность А.М.Бутлерова

Александр Бутлеров родился в 1828 году в Бутлеровке – небольшой деревушке неподалеку от Казани, где находилось имение отца. Матери своей Саша не помнил, она умерла через 11 дней после его рождения. Воспитанный отцом, человеком образованным, Саша хотел во всем походить на него.

Сначала он ходил в пансион, а затем поступил в Первую казанскую гимназию, учителя которой были очень опытные, хорошо подготовленные, они умели заинтересовать учеников. Саша легко усваивал материал, так как с раннего детства его приучили к систематической работе. Особенно привлекали его естественные науки.

После окончания гимназии, вопреки желанию отца, Саша поступил на естественнонаучное отделение Казанского университета, правда, пока только слушателем, так как он был еще несовершеннолетним. Лишь в следующем, 1845 году, когда юноше исполнилось 17 лет, его фамилия появилась в списке принятых на первый курс.

В 1846 году Александр заболел тифом и чудом выжил, а вот заразившийся от него отец скончался. Осенью вместе с тетей они переехали в Казань. Постепенно молодость брала своё, к Саше вернулись и здоровье, и веселье. Молодой Бутлеров занимался с исключительным усердием, но, к своему удивлению, заметил, самое большое удовольствие доставляют ему лекции по химии. Лекции профессора Клауса его не удовлетворяли, и он стал регулярно посещать лекции Николая Николаевича Зинина, которые читались для студентов физико-математического отделения. Очень скоро Зинин, наблюдая за Александром во время лабораторных работ, заметил, что этот светловолосый студент необыкновенно одарен и может стать хорошим исследователем.

Бутлеров занимался успешно, но все чаще задумывался над своим будущим, не зная, что ему, в конце концов, выбрать. Заняться биологией? Но, с другой стороны, разве отсутствие ясного представления об органических реакциях не предлагает бесконечные возможности для исследования?

Чтобы получить ученую степень кандидата, Бутлеров должен был представить диссертацию по окончании университета. К этому времени Зинин уехал из Казани в Петербург и ему не оставалось ничего иного, как заняться естественными науками. Для кандидатской работы Бутлеров подготовил статью «Дневные бабочки Волго-Уральской фауны». Однако обстоятельства сложились так, что Александру все-таки пришлось вернуться к химии.

После утверждения Советом его ученой степени Бутлеров остался работать в университете. Единственный профессор химии Клаус не мог вести все занятия сам и нуждался в помощнике. Им стал Бутлеров. Осенью 1850 года Бутлеров сдал экзамены на ученую степень магистра химии и немедленно приступил к докторской диссертации «Об эфирных маслах», которую защитил в начале следующего года. Параллельно с подготовкой лекции Бутлеров занялся подробным изучением истории химической науки. Молодой ученый усиленно работал и в своем кабинете, и в лаборатории, и дома.

По мнению его теток, их старая квартира бала неудобной, поэтому они сняли другую, более просторную у Софьи Тимофеевны Аксаковой, женщины энергичной и решительной. Она приняла Бутлерова с материнской заботой, видя в нем подходящую партию для дочери. Несмотря на постоянную занятость в университете, Александр Михайлович оставался веселым и общительным человеком. Он отнюдь не отличался пресловутой «профессорской рассеянностью», а приветливая улыбка и непринужденность в обращении делали его желанным гостем повсюду. Софья Тимофеевна с удовлетворением замечала, что молодой ученый был явно не равнодушен к Наденьке. Девушка и в самом деле была хороша: высокий умный лоб, большие блестящие глаза, строгие правильные черты лица и какое-то особое обаяние. Молодые люди стали добрыми друзьями, а со временем начали все чаще ощущать необходимость быть вместе, делится самыми сокровенными мыслями. Вскоре Надежда Михайловна Глумилина – племянница писателя С.Т. Аксакова стала женой Александра Михайловича.

Бутлеров был известен не только как незаурядный химик, но и как талантливый ботаник. Он проводил разнообразные опыты в своих оранжереях в Казани и в Бутлеровке, писал статьи по проблемам садоводства, цветоводства и земледелия. С редкостным терпением и любовью наблюдал он за развитием нежных камелий, пышных роз, выводил новые сорта цветов.

4 июня 1854 года Бутлеров получил подтверждение о присуждении ему ученой степени доктора химии и физики. События разворачивались с невероятной быстротой. Сразу же после получения докторской степени Бутлеров был назначен исполняющим обязанности профессора химии Казанского университета. В начале 1857 года он стал уже профессором, а летом того же года получил разрешение на заграничную командировку.

Бутлеров прибыл в Берлин в конце лета. Затем он продолжил поездку по Германии, Швейцарии, Италии и Франции. Конечной целью его путешествия был Париж – мировой центр химической науки того времени. Его влекла, прежде всего, встреча с Адольфом Вюрцем. Бутлеров работал в лаборатории Вюрца два месяца. Именно здесь он начал свои экспериментальные исследования, которые в течение последующих двадцати лет увенчались открытиями десятков новых веществ и реакций. Многочисленные образцовые синтезы Бутлерова этанола и этилена, третичных спиртов, полимеризации этиленовых углеводородов лежат у истоков ряда отраслей промышленности и, таким образом, оказали на нее самое непосредственное стимулирующее влияние.

Занимаясь изучением углеводородов, Бутлеров понял, что они представляют собой совершенно особый класс химических веществ. Анализируя их строение и свойства, ученый заметил, что здесь существует строгая закономерность. Она и легла в основу созданной им теории химического строения.

Его доклад в Парижской академии наук вызвал всеобщий интерес и оживленные прения. Бутлеров говорил: «Может быть, настало время, когда наши исследования должны стать основой новой теории химического строения веществ. Эта теория будет отличаться точностью математических законов и позволит предвидеть свойства органических соединений». Подобных мыслей никто до сих пор не высказывал.

Через несколько лет, во время второй заграничной командировки, Бутлеров представил на обсуждение созданную им теорию. Сообщение он сделал на 36-м съезде немецких естествоиспытателей и врачей в Шпейере. Съезд состоялся в сентябре 1861года.

Он выступил с докладом перед химической секцией. Тема носила более чем скромное название: «Нечто о химическом строении тел».

Бутлеров говорил просто и ясно. Не вдаваясь в ненужные подробности, он познакомил аудиторию с новой теорией химического строения органических веществ: его доклад вызвал небывалый интерес.

Термин «химическое строение» встречался и до Бутлерова, но он переосмыслил его и применил для определения нового понятия о порядке межатомных связей в молекулах. Теория химического строения служит теперь основой всех без исключения современных разделов синтетической химии.

Итак, теория заявила своё право на существование. Она требовала дальнейшего развития, и где же, как не в Казани, следовало этим заниматься, ведь там родилась новая теория, там работал ее создатель. Для Бутлерова ректорские обязанности оказались тяжким и непосильным бременем. Он несколько раз просил освободить его от этой должности, но все его просьбы оставались неудовлетворенными. Заботы не покидали его и дома. Только в саду, занимаясь любимыми цветами, он забывал тревоги и неурядицы прошедшего дня. Часто вместе с ним в саду работал его сын Миша; Александр Михайлович расспрашивал мальчика о событиях в школе, и рассказывал любопытные подробности о цветах.

Наступил 1863 год – самый счастливый год в жизни великого ученого. Бутлеров был на правильном пути. Ему удалось впервые в истории химии получить самый простой третичный спирт – третичный бутиловый спирт, или триметилкарбинол. Вскоре после этого в литературе появились сообщения об успешно проведенном синтезе первичного и вторичного бутиловых спиртов.

Ученым был известен изобутиловый спирт еще с 1852 года, когда он был впервые выделен из природного растительного масла. Теперь уже ни о каком споре и речи быть не могло, так как существовало четыре различных бутиловых спирта, и все они – изомеры.

В 1862 – 1865 годах Бутлеров высказал основное положение теории обратимой изомеризации таутомерии, механизм которой, по Бутлерову, заключался в расщеплении молекул одного строения и соединении их остатков с образованием молекул другого строения. Это была гениальная мысль. Великий ученый утверждал необходимость динамического подхода к химическим процессам, то есть рассматривать их как равновесные.

Успех принес ученому уверенность, но в то же время поставил перед ним новую, более трудную задачу. Необходимо было применить структурную теорию ко всем реакциям и соединениям органической химии, а главное, написать новый учебник по органической химии, где все явления рассматривались бы с точки зрения новой теории строения.

Бутлеров работал над учебником почти два года без перерыва. Книга «Введение к полному изучению органической химии» вышла из печати тремя выпусками 1864 – 1866 годах. Она не шла ни в каком сравнение, ни с одним из известных тогда учебников. Этот вдохновенный труд был откровением Бутлерова – химика, экспериментатора и философа, перестроившего весь накопленный наукой материал по новому принципу, по принципу химического строения.

Книга вызвала настоящую революцию в химической науке. Уже в 1867 году началась работа по ее переводу и изданию на немецком языке. Вскоре после этого вышли издания почти на всех основных европейских языках. По словам немецкого исследователя Виктора Мейера, она стала «путеводной звездой» в громадном большинстве исследований в области органической химии.

С тех пор как Александр Михайлович закончил работу над учебником, он все чаще проводил время Бутлеровке. Даже во время учебного года семья по нескольку раз в неделю выезжала в деревню. Бутлеров чувствовал здесь себя свободным от забот и целиком отдавался любимым увлечениям: цветам и коллекциям насекомых.

Теперь Бутлеров меньше работал в лаборатории, но внимательно следил за новыми открытиями. Весной 1868 года по инициативе знаменитого химика Менделеева, Александра Михайловича пригласили в Петербургский университет, где он начал читать лекции и получил возможность организовать собственную химическую лабораторию. Бутлеров разработал новую методику обучения студентов, предложив ныне повсеместно принятый лабораторный практикум, в котором студенты обучались приемам работы с разнообразной химической аппаратурой.

Одновременно с научной деятельностью Бутлеров активно включается и в общественную жизнь Петербурга. В то время прогрессивную общественность особенно волновал вопрос об образовании женщин. Женщины должны иметь свободный доступ к высшему образованию! Были организованы Высшие женские курсы при Медико-хирургической академии, начались занятия и на Бестужевских женских курсах, где Бутлеров читал лекции по химии.

Многосторонняя научная деятельность Бутлерова нашла признание Академии наук. В 1871 год его избрали экстраординарным академиком, а три года спустя – ординарным академиком, что давало право получить квартиру в здании Академии. Там жил и Николай Николаевич Зинин. Близкое соседство еще больше укрепило давнюю дружбу.

Годы шли неумолимо. Работа со студентами стала для него слишком тяжела, и Бутлеров решил покинуть университет. Прощальную лекцию он прочитал 4 апреля 1880 года перед студентами второго курса. Они встретили сообщение об уходе любимого профессора с глубоким огорчением. Ученый совет принял решение просить Бутлерова остаться и избрал его ещё на пять лет.

Ученый решил ограничить свою деятельность в университете лишь чтением основного курса. И все-таки несколько раз в неделю появлялся в лаборатории и руководил работой.

Через всю жизнь Бутлеров пронес ещё одну страсть – пчеловодство. В своем имении он организовал образцовую пасеку, а в последние годы жизни настоящую школу для крестьян-пчеловодов. Своей книгой «Пчела, ее жизнь и правила толкового пчеловодства» Бутлеров гордился едва ли не больше, чем научными работами.

Бутлеров считал, что настоящий ученый должен быть и популяризатором своей науки. Параллельно с научными статьями он выпускал общедоступные брошюры, в которых ярко и красочно рассказывал о своих открытиях. Последнюю из них он закончил за полгода до смерти.

История применения извести насчитывает не один десяток столетий. Этот материал прочно занял свое место в самых разнообразных сферах жизнедеятельности человека. Изделие имеет массу полезных характеристик, при этом само сырье является доступным, а технология изготовления довольно проста. На сегодняшний день в нашей стране ежегодно производится свыше 1 миллионов тонн извести. Она является основным компонентом строительных смесей, применяется в садоводстве, медицине и в быту.


Особенности и изготовление

Известь – это особый материал. Его делают в результате обжига и переработки мела, ракушечника, а также известняка и других карбонат-содержащих природных пород. Ископаемые обрабатываются в печах под воздействием температур от +1000 до +1300 градусов. Глыбы пород превращаются в куски различных размеров и формы, которые подвергаются дальнейшей переработке без участия химических реагентов и катализаторов. На выходе получается полностью натуральный материал, состоящий на 100% из естественных природных компонентов. В извести допускается небольшое наличие примесей глины и минеральных добавок.


Состав и свойства

В чистом виде строительная известь представляет собой материал без цвета и запаха, который очень плохо растворяется в воде.

Выделяют несколько видов извести.

  • Гашеная. Химическая формула Ca (OH) 2. Она подразделяется на порошкообразную пушонку и известковое тесто.
  • Негашеная. Этот состав с формулой СаО можно условно поделить на молотую и комовую в зависимости от способа обработки.
  • Хлорная. Формула выглядит как Ca (Cl) OCl. Она считается отличным антисептиком.
  • Натровая. Этот вид представлен смесью гашеной извести и NaOH (каустической натриевой соды). Он применяется узконаправленно, где требуется нейтрализация углекислой кислоты.

Изделия, в составе которых базовым компонентом является известь, отличаются повышенной прочностью, водостойкостью и плотностью.

К достоинствам материала относят:

  • гигроскопичность – известь устойчива к воздействию влажности, не пропускает жидкость и не меняет своих свойств под воздействием неблагоприятных внешних условий;
  • дезинфекция – является антисептиком, все попадающие на поверхность извести бактерии погибают, состав является средой неблагоприятной для появления плесени и грибков;
  • отсутствие неприятного запаха;
  • универсальность – его технические характеристики высоки, может использоваться на старом покрытии, а также на свежеокрашенных поверхностях;
  • стойкость к воздействию УФ-лучей;
  • хорошее взаимодействие с красящим составом;
  • невысокая цена.


Известь обладает некоторыми недостатками.

  • Вероятность появления полос, разводов и пузырей. Такое происходит в случаях, если не соблюдены все правила разведения состава: слишком жидкий раствор не даст нужного оттенка, а слишком густой – начнет осыпаться и превращаться в пузыри по мере высыхания.
  • Материал очень едкий. Он требует соблюдения правил техники безопасности при работе с материалом, его хранении и транспортировке.


Разновидности

Технология обработки природного сырья обуславливает деление строительной извести на два типа:

  • негашеная, содержащая CaO;
  • гашеная (гидратная), основным компонентом которой является Ca (OH) 2.



Отличительными особенностями жирной извести считаются:

  • высокая скорость гашения;
  • выделение тепла;
  • пластичность состава.


Такой материал добавляется в строительные растворы для повышения эластичности смеси и удобства использования. Тощий состав имеет большую скорость гашения, а тепла при этом выделяется гораздо меньше. В результате переработки состав получается зернистым и неоднородным, а само тесто обладает малой пластичностью.



Известь, которая имеет свойство затвердевать в воздухе, называют воздушной. Смесь, которая может застыть и на воздухе и в воде, имеет название гидравлическая. В воздушной извести до 12% состава приходится на силикаты и алюмоферрит кальция, в редких случаях этот показатель достигает 20%. Такая смесь широко используется при окрашивании пористых поверхностей бетона, кирпича, штукатурки и природного камня. Процент примесей в гидратных составах составляет более 25% и доходит до 90%. Они распространены в работе с поверхностями, подвергающиеся постоянному воздействию влаги.


По параметрам окисла в составе извести можно условно выделить:

  • кальциевую – содержит до 2% MgO;
  • маломагнезиальную – содержит 2–5% MgO;
  • магнезиальную с содержанием окисла магния 5–20%;
  • доломитовую, включающую 20–40% этого компонента.


В зависимости от типа переработки природного сырья условно выделяют следующие варианты воздушной извести:

  • негашеная комовая или кипелка, которая в массе своей состоящая из Са (ОН);
  • негашеная молотая – это материал, получаемый в результате дробления комовой извести, отличается порошкообразной структурой;
  • гашеная известь образуется при гашении комовой извести;
  • известковое тело – это еще один материал, вырабатываемый вследствие гашения комового состава с тестообразной структурой;
  • известковое молоко – это известь светлого оттенка, гидроксид кальция в ней присутствует как в растворенном состоянии, так и в виде частиц.

По скорости гашения материал разделяют на три вида:

  • быстрогасящаяся (скорость гашения не более 8 минут);
  • среднегасящаяся (время реакции составляет от 8 до 25 минут);
  • медленногасящаяся (требуется 25 минут и больше)


По типу использования выделяется белильная, технологическая и другие типы извести. Помимо этого, любую известь условно делят на состав с примесями и без них.

Гашеная и негашеная: разница

Гашеная и негашеная разновидности извести – это вещества, отличающиеся по своему химсоставу. Негашеная является оксидом кальция, а гашеная – ее гидроксидом, она получается в результате гашения водой. Кстати, при хранении негашеная известь постепенно впитывает влагу из воздуха и медленно преобразуется в гашеную.



Различается и сфера их применения. Негашеная известь является компонентом сухих строительных смесей, а также используется для производства силикатного кирпича. Гашеную известь применяют при окрашивании и оштукатуривании в качестве вяжущего компонента.


Негашеная известь имеет несколько преимуществ:

  • не образует отходов при работе;
  • невысокая степень впитываемости жидкости;
  • возможность эксплуатации при минусовых температурах;
  • высокая прочность;
  • широкий спектр использования.


Наряду с достоинствами, негашеная смесь имеет и существенный недостаток – она опасна для здоровья, является едким составом, приводит к ожогам кожных покровов и слизистых оболочек. Работа с ней требует осторожности, помещение должно быть вентилируемым, а также целесообразно использовать защитные очки, респиратор и перчатки.


Как определить какая известь перед вами – гашеная или нет.

  • Эту информацию обязательно указывают на упаковке.
  • Смеси можно различить наощупь. При прикосновении к негашеному материалу чувствуется тепло, гашеная известь же имеет нормальную температуру.
  • Негашеная известь – это чаще всего камешки и комки, а гашеная смесь реализуется в порошкообразном состоянии.
  • Проверить состав можно с помощью воды. При попадании жидкости на негашеную известь моментально начинается реакция, интенсивно выделяется тепло и газ, а во все стороны летят брызги.

Применение

Известковые составы имеют довольно широкую сферу использования.

  • Для дезинфекции помещений. После обработки на стенах и на потолке не образуются грибки и плесень.
  • В качестве утеплителя в частном домостроении. При соединении пушонки с гипсом и опилками получается недорогой экологически безопасный утеплитель, им заполняют пустоты. По мере застывания на поверхности образуется пленка, которая создает эффект теплозащиты, но при этом не препятствует вентиляции воздуха.
  • При кладке кирпичей. В сочетании с гипсом известковые составы способствуют повышенной адгезии поверхностей, опережая по этому параметру цементные растворы.




Гашеная и негашеная извести имеют свои особенности использования. Негашеная известь используется в строительстве. Долгое время из нее производили цемент, который довольно хорошо застывает и обеспечивает сцепляемость покрытия. Однако известь впитывает влагу, поэтому в стенах начинает появляться плесень. Эта особенность привела к постепенному отказу от использования негашеной извести в строительстве.


На сегодняшний день этот состав является активным компонентом штукатурки, шлакобетонов и красок. Негашеная известь используется в холодное время года, поскольку при ее гашении выделяется сильное тепло, которое создает нужную температуру при затвердевании.




Совет: нельзя применять негашеную известь для работ по отделке печей, каминов и обогреваемых поверхностей, поскольку под воздействием высоких температур известь выделяет СО2 – углекислоту, опасную для жизни и здоровья людей.




Отдельно стоит упомянуть об использовании известняка в сельском хозяйстве, поскольку без него не обходится ни один садовод-огородник. К известковым удобрениям относятся озерная известь, мергель, доломитовая мука и туф, которые производятся путем переработки негашеной извести с пушонкой. Эти удобрения предназначены для покраски деревьев (для этого нужно развести 1 кг состава в 4 литрах воды) и опрыскивания растений (известковую воду смешивают с медным купоросом).


Как гасить?

Гашение извести проходит в соответствии с химической формулой: СаО + Н2О = Са (ОН) 2 + 65,1 килоджоуля. Для этого порошок известняка растворяют в воде, которая реагирует с оксидом кальция. В процессе реакции отмечается активное выделение тепла, как следствие вода переходит в газообразное состояние. Выделяющиеся пары разрыхляют породу, комки преобразуются в мелкофракционный порошок.


Если в процессе гашения в известь добавляют воду в объеме 70–100% от ее общего веса, то получается гидратный состав (пушонка). Ее производят в фабричных условиях благодаря специально оборудованным гидраторам. Если известняк и воду взять в пропорции 3: 1, то получается известковое тесто, которое используют на строительных площадках. Выдерживая смесь в особой яме на протяжении 2 недель, оно приобретает особую пластичность.


В процессе гашения в известняке не должно оставаться ни единого оксида металла, в противном случае качество смеси будет довольно низким. Для эффективного гашения требуется не менее суток. Оптимально, если этот процесс займет 36 часов.


Основные этапы гашения:

  • известняк засыпается в емкость – допускается применение металлической тары, однако она не должна содержать ржавчины;
  • порошок заливается водой (из расчета 1 кг состава на 0,5 л для изготовления известкового теста, и 1 л воды – для создания пушонки); если известь относится к медленногасящимся, то воду желательно вливать в несколько заходов;
  • масса тщательно перемешивается, эту процедуру желательно повторить несколько раз, чтобы не допустить уменьшение выделения пара.


Работу следует проводить с максимальной осторожностью. При гашении раствор разогревается до +150 градусов, кипящий состав активно бурлит и разбрызгивается. Первые 30 минут гашения массу следует перемешивать специальной деревянной палкой, поэтому во избежание несчастных случаев используйте защитную одежду. После окончания гашения емкость закрывают крышкой и оставляют минимум на 2 дня. Оптимально дать «настояться» 2–3 недели, именно за это время состав приобретает наиболее эффективные дезинфицирующие характеристики.


Известь разводят водой в пропорциях, различающихся в зависимости от назначения состава. Если смесь готовится для побелки стен и потолков, то сырье и воду следует смешивать пропорции в 1: 2 (на 1 кг известняка берется 2 литра воды). Раствор оставляют на два дня, после чего процеживают. Чтобы обработать стволы деревьев на 1 кг порошка берут 4 литра воды, смесь также требует настаивания в течение 24 часов. Для опрыскивания растений известняк разбавляют в большом количестве воды с медным купоросом, использовать полученный раствор можно уже через час.


Помните: во время приготовления гашеной извести нельзя наклоняться над емкостью, иначе едкие пары вызовут ожог кожи, глаз и органов дыхания.

  • чтобы покрытие было более прочным, а слой штукатурки не набух, в известковое молоко добавляют обойный клей или краску на латексной основе (до 10–15% от общего веса смеси);
  • при изготовлении смеси для побелки в молочный раствор можно добавить столовую ложку жидкого зеленого мыла – это обеспечивает более плотное приставание состава к коре деревьев;
  • в декоративную побелку стоит добавить натуральную олифу (1/3 ч. л. на 1 литр состава или 5 г соли), что позволит придать покрытию стойкости к внешним неблагоприятным воздействиям;
  • если в побелку добавить немного синьки, то она даст легкий голубоватый оттенок – это свойство часто используется при приготовлении растворов для покрытия потолка;
  • красящие известковые составы лучше использовать в холодных или влажных помещениях.

Хранение и техника безопасности

При работе с известью требуется соблюдение правил техники безопасности:

  • смешивание составов производится только в металлической емкости;
  • требуется использовать средства индивидуальной защиты для лица, глаз, рук и органов дыхания;
  • непосредственно гашение начинается спустя 10–20 минут после добавления воды в известь, во время реакции происходит интенсивное выделение пара, поэтому не рекомендуется наклоняться над емкостью и проверять консистенцию смеси руками;
  • при взаимодействии материала с водой выделяется специфический запах, все работы лучше осуществлять в вентилируемом помещении либо на свежем воздухе.


Есть свои особенности хранения известковых составов. Необходимо обеспечить гидроизоляцию комовой извести, поскольку это вещество может погасить даже содержащаяся в воздухе влага. Если смесь хранится в бумажном мешке, то ее срок годности является небольшим, поскольку она теряет свои эксплуатационные свойства через месяц после распаковки. В помещении, где хранится известь, должны быть обустроены деревянные полы, поднятые минимум на 30 см от земли.


Помните: нарушение правил хранения опасно не только потерей потребительских свойств, реакция извести может привести к возгоранию, если вблизи места хранения находятся электроприборы и легко плавящиеся материалы. Не забывайте, что в случае возгорания использовать воду для тушения недопустимо.

Помощь при ожогах

Ожог известью – это химическое поражение кожи, которое чревато самыми неприятными последствиями. Негашеная известь – это щелочь, которая эмульгирует и растворяет кожный жир, проникая в глубокие слои эпидермиса. Внешне ожог выглядит как сложный некроз тканей грязно-белого оттенка с образованием рыхлых струпьев. При попадании на кожу и слизистые щелочь проникает во все стороны, поэтому очаг поражения намного больше, чем зона контакта с известью. Поврежденные ткани частично утрачивают способность к регенерации и раны заживают очень долго.


При поражении медицинская помощь должна оказываться незамедлительно. Необходимо оперативно вызвать доктора, а пока она едет постараться улучшить состояние пострадавшего. Если на кожу попала гашеная известь, то следует промывать пораженные участки холодной водой как минимум 15 минут, а затем обработать настоем ромашки или противовоспалительной мазью.


А вот если произошел ожог негашеным составом, то промывать кожу водой категорически запрещено, ведь это может вызвать усугубление ситуации и нанести непоправимый ущерб здоровью. Большая часть вещества выйдет вместе со слезами, а его остатки надо удалить хлопчатобумажной тканью и смазать маслом или жиром. Кстати, это единственный тип химического повреждения, когда допускается их использование. При любых других типах повреждений подобные реагенты категорически запрещено. Рану следует прикрыть стерильной тканью, а затем незамедлительно отправиться в больницу.


Сложнее дело обстоит в случае попадания извести в глаза. Она вызывает довольно опасные последствия, вплоть до частичной или полной потери зрения. Мелкие и средние фракции не так опасны, они могут вызвать лишь конъюнктивит. Крупные части буквально приклеиваются к слизистой глаза и фактически разъедают их, проникая внутрь и вызывая резкую боль, жжение и спазм век.


Первая помощь включает в себя:

  • закапывание динатриевой соли, которая связывает ионы металлов;
  • использование болеутоляющих средств, в том числе местных.