Основы проектирования и монтажа систем отопления. Утилизация теплоты Общие принципы работы аппаратов по утилизации тепла

Из всех видов потребляемой в химической промышленности энергии первое место принадлежит тепловой энергии. Степень использования тепла при проведении химико-технологического процесса определяется тепловым К.П.Д.:

где Q т и Q пр соответственно количество тепла, теоретически и практически затрачивае­мого на осуществление реакции.

Использование вторичных энергетических ресурсов (отходов) повышает К.П.Д. Энергетические отходы используются в химических и других отраслях промышленности для различных нужд.

Особенно большое значение в химической промышленности имеет утилизация тепла продуктов реакций, выходящих из реакторов, для предварительного нагрева материалов, поступающих в эти же реакторы. Такой нагрев осуществляется в аппаратах, называемых регенераторами, рекуператорами и котлами-утилизаторами. Они накапливают тепло отхо­дящих газов или продуктов и отдают его для проведения процессов.

Регенераторы представляют собой периодически действующие камеры, заполненные насадкой. Для непрерывного процесса необходимо иметь, по крайней мере, 2 регенера­тора.

Горячий газ сначала проходит через регенератор А, нагревает его насадку, а сам охлажда­ется. Холодный газ проходит через регенератор Б и нагревается от ранее нагретой на­садки. После нагрева насадки в А и охлаждения в Б заслонки перекрывают и т.д.

В рекуператорах реагенты поступают в теплообменник, где нагреваются за счёт те­пла горячих продуктов, выходящих из реакционного аппарата, и затем подаются в реак­тор. Теплообмен происходит через стенки трубок теплообменника.

В котлах-утилизаторах тепло отходящих газов и продуктов реакции используют для получения пара.

Горячие газы движутся по трубам, размещённым в корпусе котла. В межтрубном про­странстве находится вода. Образующийся пар, проходя влагоотделитель, выходит из котла.

Сырьё

Химическая промышленность характеризуется высокой материалоёмкостью произ­водства. На одну тонну готовой химической продукции расходуется, как правило, не­сколько тонн сырья и материалов. Отсюда следует, что себестоимость химической про­дукции в значительной мере определяется качеством сырья, способами и стоимостью его получения и подготовки. В химической промышленности затраты на сырьё в себестоимо­сти продукции составляют 60-70% и более.

От вида и качества сырья существенно зависит полнота использования производст­венных мощностей отраслей химической промышленности, производительность тепла, продолжительность работы оборудования, затраты труда и т.д. Свойства сырья, содержа­ние в нём полезных и вредных компонентов определяют применяемую технологию его обработки.

Виды сырья весьма разнообразны, и их можно разделить на следующие группы:

  1. минеральное сырьё;
  2. растительное и животное сырьё;
  3. воздух, вода.

1. Минеральное сырьё – полезные ископаемые, добываемые из земных недр.

Полезные ископаемые в свою очередь подразделяются на:

  • рудные (получение металлов) важные полиметаллические руды
  • нерудные (удобрения, соли, H + , OH - стекло и т.д.)
  • горючие (угли, нефть, газ, сланцы)

Рудное сырьё – это горные породы, из которых экологически выгодно получать ме­таллы. Металлы в нём находятся большей частью в виде оксидов и сульфидов. Руды цвет­ных металлов довольно часто содержат в своём составе соединения нескольких металлов – это сульфиды Pb, Cu, Zn, Ag, Ni и др. Такие руды называют полиметаллическими или комплексными. Непременной составной частью всех промышленных руд является FeS 2 – пирит. При переработке некоторых руд получают наряду с металлами и другие продукты. Так, например, одновременно с Cu, Zn, Ni при переработке сульфидных руд получают и H 2 SO 4 .

Нерудное сырьё – это горные породы, используемые в производстве неметаллических ма­териалов (кроме хлоридов щелочных металлов и Mg). Этот вид сырья или непосредст­венно используется в народном хозяйстве (без химической переработки) или служит для того или иного химического производства. Это сырьё используют в производстве удобре­ний, солей, кислот, щелочей, цемента, стекла, керамики и т.д.

Нерудное сырьё условно делят на следующие группы:

  • строительные материалы – сырьё используется непосредственно или после механиче­ской или физико-химической отработки (гравий, песок, глина и т.д.)
  • индустриальное сырьё – используется в производстве без обработки (графит, слюда, корунд)
  • химическое минеральное сырьё – используют непосредственно после химической об­работки (сера, селитра, фосфорит, апатит, сильвинит, каменная и другие соли)
  • драгоценное, полудрагоценное и поделочное сырьё (алмаз, изумруд, рубин, мала­хит, яшма, мрамор и т.д.)

Горючее минеральное сырьё – ископаемые, которые могут служить в качестве топ­лива (угли, нефть, газ, горючие сланцы и др.)

2. Растительное и животное сырьё – это продукты сельского (земледелия, животноводства, овощеводства), а также мясного и рыбного хозяйства.

По своему назначению оно подразделяется на пищевое и техническое. К пищевому сырью относятся картофель, сахарная свекла, хлебные злаки и т.д. Химическая и другие отрасли промышленности потребляют растительное и животное сырьё, непригодное для пищи (хлопок, солома, лён, китовый жир, когти и т.д.). Деление сырья на пищевое и техниче­ское в некоторых случаях условно (картофель → спирт).

3. Воздух и вода являются самым дешёвым и доступным сырьём. Воздух – практически неисчерпаемый источник N 2 и O 2. H 2 O не только непосредственный источник H 2 и O 2 , но и участвует практически во всех химических процессах, а также используется как раство­ритель.

Экономический потенциал любой страны в современных условиях в большей сте­пени определяется природными ресурсами полезных ископаемых, масштабами и качест­венной характеристикой их местоположений, а также уровнем развития сырьевых отрас­лей промышленности.

Сырьевые ресурсы современной промышленности очень разнообразны, причем с развитием новой техники, внедрением более эффективных методов производства сырье­вая база постоянно расширяется за счёт открытия новых месторождений, освоения новых видов сырья и более полного использования всех его компонентов.

Отечественная промышленность имеет мощную сырьевую базу и располагает запа­сами всех необходимых ей видов минерального и органического сырья. В настоящее время США занимает первое место в мире по добыче запасов P, каменных солей, NaCl, Na 2 SO 4 , асбеста, торфа, древесины и т.д. У нас одна из первых мест по разведанным зале­жам нефти и газа. И разведанные запасы сырья из года в год увеличиваются.

На современном этапе развития промышленности большое значение приобретает ра­циональное использование сырья, которое предполагает следующие мероприятия. Рацио­нальное использование сырья позволяет повысить экологическую эффективность произ­водства, т.к. стоимость сырья составляет основную долю в себестоимости химической продукции. В связи с этим стремятся использовать более дешёвое, особенно местное сы­рьё. Например, в настоящее время в качестве углеводородного сырья всё шире исполь­зуют нефть и газ, а не каменный уголь, этиловый спирт, полученный из пищевого сырья заменяют на гидролизный из древесины.

В металлургическом производстве с целью утилизации тепла отходящих газов применяют рекуператоры, регенераторы, котлы-утилизаторы. В этих устройствах использование тепла газов идет в двух направлениях.

1. Тепло отходящих газов расходуется на подогрев воздуха и газообразного топлива, затрачиваемых на отопление печи и, следовательно, снова возвращается в печь. В данном случае утилизация тепла газов непосредственно влияет на работу печи, повышая температуру в печи и увеличивая экономию топлива. Такое использование тепла наблюдается при применении рекуператоров и регенераторов.

2. Тепло газов в печь не возвращается, а используется на обогрев котлов-утилизаторов, в которых вырабатывается пар, характеризуемый высоким давлением и температурой. В этом случае установка котла-утилизатора за агрегатом прямо не влияет на его работу, но дает вполне определенный и значительный эффект по заводу в целом.

С теплотехнической точки зрения утилизация тепла отходящих газов приводит к следующему.

а) Экономия топлива. В топливных печах (в отличие от электрических) тепло получается в результате сжигания топлива за счет воздуха. В общее количество тепла, затрачиваемого на процесс, входит и так называемое физическое тепло топлива и воздуха, под которым понимается количество тепла, которым обладает топливо и воздух, будучи нагретыми до определенной температуры. Поскольку на нагрев металла до заданной температуры в конкретной печи требуется строго определенное количество тепла, то, очевидно, что чем выше доля физического тепла в общем тепле, тем ниже доля химического тепла топлива, т. е. тем меньше топлива надо затратить на нагрев.

Чем выше степень утилизации, то есть чем выше нагревается топливо и воздух и, следовательно, ниже температура дымовых газов, уходящих из рекуператора или регенератора, тем выше экономия топлива, так как большая часть тепла снова возвращается в печь.

б) Повышение температуры. Известно, что при сжигании топлива выделяется тепло, которое нагревает продукты сгорания до определенной температуры, называемой температурой горения.

Температура горения равна:

t = Qнр /Vпр * Ср * С

где Qнр - низшая теплота сгорания топлива, кДж / кг или кДж / м3;

Vпр - объем продуктов, образующиеся при полном сжигании единицы топлива, м3 / кг, или м3 / м3;

Ср - средняя удельная теплоемкость продуктов сгорания, кДж/(кг * град), или кДж/ (м 3* град).

Если газ и воздух были подогреты до какой-либо температуры и, следовательно, обладали физическим теплом Qф, то это тепло тоже будет расходоваться на подогрев продуктов сгорания. Следовательно, в числителе надо прибавить Qф и тогда

Видно,что чем больше Qф (Qнр для каждого вида топлива есть величина постоянная), тем больше числитель и выше, следовательно, температура горения топлива.

в) Интенсификация горения топлива. Кроме экономии топлива и повышения температуры горения его, подогрев топлива и воздуха приводит к более интенсивному протеканию самих реакций горения топлива. Так, например, максимальная скорость горения водорода при подогреве со 100 до 400 градусов увеличивается более чем в четыре раза. При сжигании жидкого топлива процесс горения интенсифицируется за счет ускорения процесса испарения жидкого топлива и, следовательно, образования газообразной смеси.

При объективной оценке эффективности нужно учитывать разные режимы работы утилизатора: «сухой», «мокрый», неуправляемый, управляемый, оттайки и др., описанные в предыдущей статье (журнал С.О.К., №12/2010). В результате возможных ошибок, перечисленных ниже, можно получить фактическую эффективность и экономию теплоты существенно меньшую, чем по расчету, это может не устроить заказчика. Последний не намерен долго ждать окупаемости этого аппарата, отводя этому срок примерно два-три года.

Основные теплотехнические параметры утилизаторов теплоты и холода

В технических и частично экономических расчетах, при испытании теплоутилизационного оборудования используют различные и, в общем случае, многочисленные параметры, одни из которых применяют чаще, другие — реже. Среди этих параметров основными являются:

В вышеприведенных формулах использованы выражения, называемые водяными эквивалентами по наружному W н и уходящему W у воздуху, по циркулирующей воде или рассолу W w , по насадке W нас: W н = G н c в; W у = G у c в; W w = G w c w и W нас = М нас c нас. Все эти величины, кроме W нас, измеряют в кВт/°C, а величину W нас — в кДж/°С.

Отношение W нас к любому из эквивалентов (W н, W y , W w) характеризует инерционность процесса передачи теплоты от насадки к движущейся среде и измеряется в секундах.

Технико-экономическая эффективность применения теплоутилизации в СКВ и СВ

Задача обоснования эффективности теплоутилизации связана с учетом значительной стоимости оборудования, достигающей 30-50 % от стоимости приточной установки, разной продолжительности использования, тенденцией роста тарифов на тепловую и электрическую энергию, высокой платой за подсоединение к теплосети, высоких штрафов за превышение температурой обратной воды ее графика ТЭЦ, поэтому однозначного решения такая задача не имеет. По мнению А.А. Рымкевича и других специалистов, утилизация теплоты — важное вторичное мероприятие, которое нужно рассматривать и анализировать после того, как исчерпаны все первичные возможности снижения потребления теплоты за счет комплекса мероприятий.

Способы оценки эффективности утилизации теплоты

Существуют несколько способов оценки эффективности утилизации теплоты в том или ином аппарате. Первый способ оценки на основе коэффициента использования энергии как отношения получаемой в утилизаторе теплоты к затрачиваемой электроэнергии на преодоление сопротивления сред η э = Q т /N.

Будучи чисто энергетической характеристикой, он не учитывает стоимости аппарата и разные, к тому же возрастающие, тарифы за теплоту (по горячей воде или сопутствующей электроэнергии) и за электроэнергию, т.е. использует натуральные мгновенные показатели. Кроме того, получаемая в утилизаторе теплота всегда переменна в зависимости от начальной разности температур t у - t нi текущей эффективности и режима работы теплоутилизатора.

Второй способ оценки основан на эксергетическом КПД , учитывающем относительную эксергию теплоты, влаги и эксергию движущегося воздуха:

где E 1 и Е 2 — эксергия теплоты, влаги и эксергия удаляемого и приточного (наружного) воздуха; ΣE n — суммарная эксергия потребляемой электрической энергии в системе. По поводу этих коэффициентов В.Н. Богословский и М.Я. Поз справедливо заметили, что «...любой из указанных термодинамических показателей дает только представление о степени термодинамического совершенства процесса и не может служить основанием для принятия технического решения.» .

Третий способ оценки является более общим технико-экономическим показателем и характеризует ожидаемый срок окупаемости дополнительных капитальных затрат (впервые предложен для условий рынка английским физиком У Томсоном (1824-1907), более известным в нашей стране как теплофизик Кельвин ) в вариантах разного типа ТУ, их эффективности, стоимости и аэродинамического сопротивления:

Годовой экономический эффект [руб/ год] как разность приведенных затрат по сравниваемым вариантам систем с теплоутилизатором (2) и без него (1) является другим комплексным показателем:

где ΔC т.год — стоимость сэкономленной теплоты в горячей воде, паре, электроэнергии с учетом настоящих и перспективных тарифов на энергоносители, руб/год; ΔC э.год — стоимость дополнительного годового расхода электроэнергии на перемещение воздуха и воды через аппарат, руб/год; ΔK ту — капитальные затраты на утилизатор, его монтаж, наладку и управление, руб.; (Е н + 0,18) ΔK ту — отчисления от дополнительных капитальных затрат на амортизацию, ремонт, общеобъектные и прочие расходы 0,18ΔK ту [руб/год], в связи с применением теплоутилизатора и изменением типоразмера воздухонагревателя, а также с учетом нормативного коэффициента эффективности:

где r — норма дисконта, r = 0,10-0,15 ; Т ок — срок окупаемости дополнительных капитальных затрат, год; ΔK вн — сокращение капитальных затрат на воздухонагреватель при уменьшении его рядности или полном отказе, руб.; ΔK прис — единовременные затраты на присоединение объекта к источнику теплоты, руб/Гкал или руб/кВт⋅ч.

В формуле должна быть учтена зависимость всех величин от конструкции утилизатора и его эффективности. Также среди составляющих эксплуатационных затрат следует учесть возможные штрафы ТЭЦ за превышение температуры обратной воды после воздухонагревателя.

Сводная номограмма для оценки эффективности современных теплоутилизаторов была разработана на основе соответствующих расчетов и представлена на рис. 1 в предположении неизменности коэффициента эффективности в течение неуправляемого режима работы аппарата. Эта номограмма построена в следующей последовательности. Предварительно по данным одного из производителей кондиционеров была оценена примерная удельная стоимость разных теплоутилизаторов (рис. 1а). Аналогично на этот график можно нанести данные об удельной стоимости теплоутилизаторов других производителей. Для конкретных условий (t y = 20 °C, t к = 10 °С) при разных θ ту построена граница режимов работы ТУ (правый квадрант на рис. 1) и определено удельное количество теплоты (на 1 кг/с нагреваемого воздуха при односменной работе).

Воспользуемся этими данными для оценки эффективности применения ТУ в климатических условиях города Санкт-Петербурга.

Оценить удельную экономическую эффективность применения теплоутилизатора, отнесенную к 1000 м 3 /ч нагреваемого наружного воздуха при его удельной стоимости K ту /L н = 40 тыс. руб/(тыс. м 3 /ч) в самом благоприятном случае, т.е при непрерывной работе системы

ΣQ ту.год = 24 тыс. кВт⋅ч/(год⋅тыс. м 3 /ч), электронагреве по среднему (между дневным и ночным) тарифу c’э = 2 руб/кВт⋅ч, аэродинамическом сопротивлении аппарата ΔР в = 0,30 кПа; КПД вентиляторной установки η = 0,7, соответствующей дополнительной мощности на перемещение воздуха 0,12 кВт/(тыс. м 3 /ч):

дополнительном годовом расходе электроэнергии 1,05 тыс. кВт⋅ч/(год⋅тыс. м 3 /ч) ΔW э = 8766 х 0,12 = 1,05.

Сокращением затрат на воздухонагреватель при устройстве теплоутилизатора пренебречь. Платой за подключение данного нагревателя к теплосети и штрафом за превышение воздухонагревателем температуры обратной воды пренебречь. Срок окупаемости затрат Т ок принять равным трем годам. Определяем срок окупаемости дополнительных капитальных затрат, получаем один год:

Поменяем условия расчета, заменив электронагрев теплоносителем — горячей водой по тарифу с’ т = 1 руб/кВт⋅ч. Тогда срок окупаемости дополнительных капитальных затрат на устройство теплоутилизатора в тех же условиях будет равен 2,7 года:

Как видно, даже при данном тарифе на теплоту в горячей воде и при непрерывной работе системы в течение суток и года высокая удельная стоимость теплоутилизатора не позволяет рассчитывать на быстрый возврат (окупаемость) капиталовложений. Если применять менее эффективные (θ тy = 0,55-0,65), но зато более дешевые устройства, то, судя по повторяемости Δτ/Δt н, основной эффект может возрасти, т.к. его достигают не при низких, а при промежуточных наружных температурах (t н = -10...+10 °С).

Для более строгого расчета нужно принимать во внимание разную поверхность, рядность и стоимость основного воздухонагревателя и еще одного электрического, работающего в случае прекращения подачи теплоносителя во внеотопительный период при t н > 8 °С. Результаты экономического расчета повысят эффективность утилизации теплоты, если учесть высокую начальную плату за присоединение воздухонагревателя к тепловой сети или другому источнику.

Оценка эффективности применения утилизаторов

Проблеме оценки эффективности применения утилизаторов посвящено много публикаций. Все они по-разному подходят к методам вычисления эффекта, учитывая одни составляющие и не учитывая другие. Дадим оценку только некоторым, наиболее характерным публикациям. В статье использован традиционный, упрощенный, по нашему мнению, не совсем правильный и частный метод расчета срока окупаемости как результат деления стоимости теплоутилизатора на стоимость разности сэкономленной тепловой и перерасходованной электрической энергии. При этом в статье не указана эффективность аппарата и комплекс «эффективность/стоимость», кстати, переменный, зависящий от типа аппарата, его воздухопроизводительности, не учтены разные режимы работы, оттайка и возникающие перерасходы, плата за присоединение и др. Все это не дает представления о различии результатов расчета в разных условиях.

Что касается многообразных климатических условий, представленных в статье городами, где суткоградусы отопительного периода изменяются от 1500 до 12 000 сут-°С за отопительный период, то эту часть работы можно существенно упростить. Проведя небольшое исследование и представив его в координатах: относительный годовой расход утилизируемой теплоты в круглогодично неуправляемом аппарате — суткоградусы отопительного периода — можно получить практически линейную зависимость (рис. 2). Такая линеаризация делает избыточными многократные расчеты, приводимые в этой статье, а прямую для данных условий (L н, θ ту, ΔK ту) достаточно провести по трем-четырем точкам, соответствующим городам в разных климатических условиях.

Технико-экономическая оценка энергосберегающего оборудования

Технико-экономической оценке энергосберегающего оборудования посвящена статья , характерная в части возникающих вопросов и замечаний. Наибольшее внимание в ней уделено собственно методике анализа и вычислению коэффициента дисконтирования, имея ввиду отдаленный срок окупаемости. Однако расчеты показывают, что полная амортизация и окупаемость затрат на эти аппараты желательна за относительно короткий срок (один-три года). В ряде случаев, при дефиците теплоты на объекте и высокой плате за присоединение к источнику, утилизация не только обоснована, но и единственно возможна для нагревания наружного воздуха.

Не имея принятую в статье итоговую формулу для срока окупаемости теплоутилизатора, трудно представить, учтены ли в приводимых расчетах: возможный дефицит теплоты на объекте и реальная, постоянно растущая плата за подсоединение к источнику теплоты; принятая доля разности капитальных затрат, учитываемая в эксплуатационных затратах на амортизацию, ремонт, общеобъектные расходы (всего около 18 %).

Покажем на примере, что единовременная плата за подсоединение к тепловой сети соизмерима или даже превышает стоимость теплоутилизатора. Пусть удельная стоимость утилизатора ΔК ту ~ 30-40 тыс. руб/(тыс. м 3 /ч). Такому единичному расходу воздуха соответствует в средних условиях расчетная теплопроизводительность утилизатора и, соответственно, уменьшение мощности при подсоединении к ТЭЦ:

Это равносильно плате за подсоединение в размере

ΔК подс = 3,45 х 12 х 10 3 = 41,5 тыс. руб., если принять удельную плату:

В условиях этого примера оказывается, что плата за присоединение к ТЭЦ соизмерима или даже больше, чем стоимость теплоутилизатора, и поэтому речи о сроке окупаемости не идет.

Нельзя не обратить внимание в анализируемой статье на способ расчета годового расхода утилизируемой теплоты. Не оговаривая режим работы теплоутилизатора, авторы приняли его по умолчанию круглогодично неуправляемым. Приближенно-синусоидальное изменение t н (t) ошибочно построено не по средним значениям температур («норме»), а по максимальным и минимальным, т.е. имеет существенно завышенную амплитуду. Соответственно этому величина утилизируемой теплоты тоже завышена. Для Санкт-Петербурга, например, t н.min.cp = -8,1 °C , а расчетная зимняя температура t нрх = -26 °C. Аналогично в теплый период года t н.max.cp = 18,1 °С , тогда как расчетная летняя температура t нрт = 24,6 °С. Также, среднегодовая температура t н.ср.год = 4,4 °С далеко не равна полусумме принятых расчетных в холодное и теплое время года (-0,6 °С). Возражение вызывает неучет режимов работы и оттайки, приводящий к завышению расхода утилизируемой теплоты, и отсутствие учета переменной эффективности аппарата.

Эффективность конструкции утилизатора можно анализировать с точки зрения выбора: оптимальной поверхности F, рядности i или глубины насадки аппарата h. Обозначим относительную рядность или глубину аппарата как h в долях от той, при которой θ ту = 1, а количество теплоты Q ту = Q т.max . При приближенно экспоненциальной зависимости Q ту ≈ 1 - exp(-h) эффективность θ ту = 1 достигается при условии h = 4 (с точностью до 1 %). Примем, что годовой расход утилизируемой теплоты приближенно экспоненциально зависит от величины h (рис. 1а), тогда как стоимость утилизатора и его аэродинамическое сопротивление от h зависят приближенно линейно.

Тогда искомый срок окупаемости можно представить в виде (функции от безразмерного параметра h, имеющей следующий вид:

где a 1 , a 2 , a 3 , a 4 — некоторые корректирующие коэффициенты, принятые постоянными.

В результате вычисления производной, приравненной нулю, получаем, что оптимум (минимум T факт) соответствует случаю, когда h = 1, а эффективность теплоутилизатора q ту.опт = 0,63 (из свойств экспоненциальной функции). Вышеописанные зависимости иллюстрирует график на рис. 3, где показан приближенный характер изменения всех составляющих приведенных затрат и срока окупаемости дополнительных затрат на подсистему утилизации от относительной глубины h, относительной толщины d или относительной поверхности F насадки или пластин такого аппарата.

Сравнивая результаты приближенной оптимизации по формуле (14) с данными о характеристиках отечественных ВРТ при L = 5-38 тыс. м 3 /ч, δ = 0,2 м, v фр = 2,2 м/с, F/L = 300-425 м 2 / (м 3 /с), F/F фр = 490-660 м 2 /м 2 , получили при насадке из алюминиевой фольги расчетную эффективность θ ту = 0,77, при насадке из технического картона — θ ту = 0,65 (в последнем случае близко к оптимальной эффективности, вычисленной при вышеописанных допущениях). Более подробно зависимости, характеризующие экономический эффект для различных теплоутилизаторов при разной производительности, сменности работы и с разной насадкой, можно определить по данным .

К аналогичным выводам об оптимальной эффективности теплоутилизатора пришли авторы «Справочника» . В частности, они отмечают: «...Доведение эффективности утилизатора до величины, большей 0,65 при односменной работе и 0,75 при трехсменной, во всех случаях приводит к уменьшению экономического эффекта, т.к. сбережение теплоты при этом достигается за счет чрезмерного роста приведенных затрат на устройство и эксплуатацию утилизаторов и расхода металла. Наибольшее влияние на экономический эффект оказывает продолжительность работы системы — при трехсменной ее работе эффект резко возрастает. Рост эффекта при увеличении расхода воздуха объясняется в основном непропорциональным ростом удельных затрат на оборудование и занимаемую им площадь.» . В этом же справочнике указано, что по данным РПИ в климатических условиях Прибалтики для пластинчатого утилизатора СВ свинарника-откормочника оптимальная эффективность не должна превышать 0,50.

Продолжение в следующем номере.

Утилизация тепла отходящих дымовых газов

Дымовые газы, покидающие рабочее пространство печей, имеют весьма высокую температуру и поэтому уносят с собой значительное количество тепла. В мартеновских печах, например, из рабочего пространства с дымовыми газами уносится около 80 % всего тепла поданного в рабочее пространство, в нагревательных печах около 60 %. Из рабочего пространства печей дымовые газы уносят с собой тем больше тепла, чем выше их температура и чем ниже коэффициент использования тепла в печи. В связи с этим целесообразно обеспечивать утилизацию тепла отходящих дымовых газов, которая может быть выполнена принципиально двумя методами: с возвратом части тепла, отобранного у дымовых газов, обратно в печь и без возврата этого тепла в печь. Для осуществления первого метода необходимо тепло, отобранное у дыма, передать идущим в печь газу и воздуху (или только воздуху). Для достижения этой цели широко используют теплообменники рекуперативного и регенеративного типов, применение которых позволяет повысить к. п. д. печного агрегата, увеличить температуру горения и сэкономить топливо. При втором методе утилизации, тепло отходящих дымовых газов используется в теплосиловых котельных и турбинных установках, чем достигается существенная экономия топлива.

В отдельных случаях оба описанных метода утилизации тепла отходящих дымовых газов используются одновременно. Это делается тогда, когда температура дымовых газов после теплообменников регенеративного или рекуперативного типа остается достаточно высокой и целесообразна дальнейшая утилизация тепла в теплосиловых установках. Так, например, в мартеновских печах температура дымовых газов после регенераторов составляет 750-800 °С, поэтому их повторно используют в котлах-утилизаторах.

Рассмотрим подробнее вопрос утилизации тепла отходящих дымовых газов с возвратом части их тепла в печь.

Следует, прежде всего, отметить, что единица тепла, отобранная у дыма и вносимая в печь воздухом или газом (единица физического тепла), оказывается значительно ценнее единицы тепла, полученной в печи в результате сгорания топлива (единицы химического тепла), так как тепло подогретого воздуха (газа) не влечет за собой потерь тепла с дымовыми газами. Ценность единицы физического тепла тем больше, чем ниже коэффициент использования топлива и чем выше температура отходящих дымовых газов.

Для нормальной работы печи следует каждый час в рабочее пространство подавать необходимое количество тепла. В это количество тепла входит не только тепло топлива , но и тепло подогретого воздуха или газа , т. е. .

Ясно, что при = const увеличение позволит уменьшить . Иными словами, утилизация тепла отходящих дымовых газов позволяет достичь экономии топлива, которая зависит от степени утилизации тепла дымовых газов


где - соответственно энтальпия подогретого воздуха и отходящих из рабочего пространства дымовых газов, кВт, или кДж/период.

Степень утилизации тепла может быть также названа к.п.д. рекуператора (регенератора), %

Зная величину степени утилизации тепла, можно определить экономию топлива по следующему выражению:

где I"д, Iд - соответственно энтальпия дымовых газов при температуре горения и покидающих печь.

Снижение расхода топлива в результате использования тепла отходящих дымовых газов обычно дает значительный экономический эффект и является одним из путей снижения затрат на нагрев металла в промышленных печах.

Кроме экономии топлива, применение подогрева воздуха (газа) сопровождается увеличением калориметрической температуры горения , что может являться основной целью рекуперации при отоплении печей топливом с низкой теплотой сгорания.

Повышение при приводит к увеличению температуры горения. Если необходимо обеспечить определенную величину , то повышение температуры подогрева воздуха (газа), приводит к уменьшению величины , т. е. к снижению доли в топливной смеси газа с высокой теплотой сгорания.

Поскольку утилизация тепла позволяет значительно экономить топливо целесообразно стремиться к максимально возможной, экономически оправданной степени утилизации. Однако необходимо сразу заметить, что утилизация не может быть полной, т. е. всегда . Это объясняется тем, что увеличение поверхности нагрева рационально только до определенных пределов, после которых оно уже приводит к очень незначительному выигрышу в экономии тепла.


Энциклопедический словарь по металлургии. - М.: Интермет Инжиниринг . Главный редактор Н.П. Лякишев . 2000 .

Смотреть что такое "утилизация теплоты" в других словарях:

    Повторное использование материальных ресурсов или уменьшение количества образуемых отходов с целью значительного снижения расхода сырья и материалов, стоимости продукции и повышения эффективности производства. Сведение количества …

    - : Смотри также: утилизация теплоты утилизация отходов … Энциклопедический словарь по металлургии

    Двигатели газовые и керосиновые - производят механическую работу, утилизируя теплоту, развиваемую при взрыве смеси светильного газа с воздухом или смеси нефтяных продуктов (бензина и керосина) с воздухом. Развиваемая при взрыве газов, т. е. при быстром горении, теплота… …

    Хлебопекарные печи - разделяются на действующие периодически и действующие непрерывно. Печи, действующие периодически, суть улучшенные или обыкновенные русские печи (см. Печи комнатные и очаги); в них топка и самое печение хлеба происходят в одной и той же камере и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    ПРОЕКТИРОВАНИЕ - химических производств, процесс создания комплекса техн. документов, необходимых для обеспечения финансирования работ, заказа на строит. материалы и изготовление оборудования, стр ва предприятия, монтажа приборов и оборудования, его пуска и… … Химическая энциклопедия

    Конденсатоотводчик - Конденсатоотводчиками называются конструкции арматуры, предназначенные для автоматического отвода конденсата. Конденсат может появляться в результате потери паром тепла в теплообменниках и при прогреве трубопроводов и установок, когда часть пара… … Википедия

    - (от лат. recuperatio обратное получение, возвращение) 1. Возвращение энергии или части материала, расходуемого при проведении того или иного технологического процесса, для повторного использования в том же процессе. Так, ценные… … Энциклопедический словарь по металлургии

    Смотри утилизация теплоты … Энциклопедический словарь по металлургии

    РЕКУПЕРАЦИЯ - (от лат. recuperatio обратное получение, возвращение) 1. Возвращение энергии или части материала, расход, при проведении того или иного технологического процесса, для повторного использования в том же процессе. Так, ценные… … Металлургический словарь

    РЕКУПЕРАТОР - теплообменная установка поверхностного типа, в которой теплообмен между теплоносителями происходит непрерывно через разделяющую их стенку; применяется в металлургии и др. областях промышленности, где происходит утилизация теплоты отходящих газов … Большая политехническая энциклопедия

Книги

  • Утилизация теплоты уходящих газов ДВС посредством турбины ЛПИ , Черкасова Марина. 1/3 энергии при работе двигателя внутреннего сгорания теряется в виде тепла с выходными газами. Выхлопные газы могут приводить в действие двигатели, работающие на органическом цикле Ренкина,… Купить за 5995 руб
  • Проектирование систем вентиляции и отопления. Учебное пособие , Шумилов Рудольф Николаевич, Толстова Юлия Исааковна, Бояршинова Анна Николаевна. Учебное пособие содержит рекомендации по расчету и организации воздухообмена и отопления в помещениях различного назначения. Даны основы проектирования систем обеспечения микроклимата и…