Основные сведения о строении атома: характеристики, особенности и формула. Из чего состоит атом? Инфографика


«Неужели это возможно в домашних условиях?» - спросите вы. Вполне возможно, только для того, чтобы рассчитать диаметр атома, надо кое-что знать. Например, что атомы многих металлов можно представить в виде маленьких, плотно упакованных шариков. В таком случае атомы-шарики занимают 74 % всего пространства, а остальные 26 % приходятся на пустот ы между ними. Еше надо знать, как связан объем шара (У) с его диаметром UD - эту формулу можно найти в учебнике или в справочнике по математике: V- тГ/Ь. где к = 3,14. Наконец, надо знать очень важную для химии величину, которая называе тся постоянной Авогадро (Л/л) в честь итальянского ученого XIX века Амедео Авогадро (1776-1856). Эта константа показывает, сколько частиц - атомов, ионов или молекул содержится водном моле вещества. Моль - очень удобная для химиков единица измерения, так как в одном моле любого вещест ва содержится одинаковое число частиц. Например. 1 моль воды (18 г), или I моль сахара (343 г), или 1 моль кислорода (32 г) содержит одинаковое число молекул, равное Л"д = 6.02 ¦ !0". Ровно столько же атомов содержит 1 моль алюминия (27 г), или I моль меди (64 г), или I мольсеребра (108 г). А I моль поваренной соли (58,5 г) содержит по 6.02 10" положительно заряженных ионов (катионов) натрия и отрицательно заряженных ионов (анионов) хлора. Понятие «моль» (раньше его называли «грамм-молекулой»,аеще раньше, во времена Менделеева, - «химическим паем») удобно тем, что им можно пользоваться и не зная численного значения постоянной Авогадро. так как ве-щества реагируют друг с другом в соответствии с числом молей в них.
О том, как ученые определили это оіромное число, мы еще поговорим, а пока вернемся к нашей ложке. Итак, пусть в предыдущем опыте нам повезло, и ложка оказалась из серебра высокой пробы с плотностью 10,5 г/см1. Теперь у нас есть все данные, чтобы определить размер «сереб-ряного атома». В I см"серебра содержится 10,5 г: 108 г/моль = 0,097 моль, или 0,097 ¦ 6,02 ¦ I0J1 = 5,84 10" атомов серебра. Если не считать пустоты между атомами, то на долю самих атомов-шари ков придется не 1 см3, а немного меньше - 0,74 см3. Значит, объем одного атома равен 0,74с.м3/5.84- Ю"= 1.27-10 "см3. Осталось только по приведенной выше формуле рассчитать диаметр атома серебра. Он получится очень маленьким: d = 3 10 4 см. пли 0,3 нм (нанометр - одна миллнардная часть метра - самая подходящая единица для измерения таких малых величин).
Все атомы имеют очень малые размеры. Цепочка из миллиона атомов серебра, плотно уложенных друг к другу, протянется всего на 0,3 мм. Для сравнения: если уложить в цепочку миллион маковых зер- нышек диаметром 1 мм, то такая цепочка протянется на 1 км! Из-за малою размера атомов их невозможно увидеть даже и самый сильный оптический микроскоп. Зато ученые придумали другие приборы, позволяющие получать изображения отдельных атомов.
Примерно такие же размеры, как атом серебра, имеют небольшие молекулы - кислорода, азота, метана, волы; все они содержат несколько небольших а томов. Бывают молекулы, которые значительно больше: они содержат много атомов или агомы больших размеров (например, атомы иода). В следующем разделе мы познакомимся с одним из методов измерения размера молекул. А сейчас - некоторые ин тересные и полезные сведения об Авогадро и постоянной, названной его именем.
Итальянский химик Авогадро прожил очень дол гую по меркам того времени жизнь. Он родился в 1776 году в Турине, в Северной Италии. Получил юридическое образование и в возрасте 20 лет был назначен секретарем префектуры. Это были годы, когда в Италии гремела слава молодого французского полководца Наполеона. Однако Авогадро не привлекала ни военная, ни юридическая карьера. Со временем он стал все больше интересоваться естественными науками - физикой и химией, которые изучил самостоятельно. В 1809 году он начал преподавать физику в городе Верчслли, недалеко от Турина, а в 1820 году был назначен профессором математической физики в Туринском университете. В университете Авогадро проработал до преклонного возраста и покинул его лишь в 1850 году. Умер Авогадро в Турине в 1856 году. О его личной жизни сохранилось очень мало сведений. Прославили же Авогадро две статьи, опубликованные в 1811 и 1814 годах. Вначале они не вызвали интереса и были почти забыты. Сегодня же имя Авогадро знают школьники всех стран, если они изучают физику и химию. Закон Авогадро звучит очень просто: «Равные объемы газообразных веществ при одинаковом давлении и температуре содержат одно и то же число молекул, так что плотность различных газов служит мерой массы их молекул». Из этого закона следовало, что, измеряя плотность разных газов, можно определять относительные массы, а также состав молекул газообразных соединений. Благодарные потомки на-звали число частиц в одном моле вещества постоянной Авогадро, которую обозначили как JVa. Кстати, само слово «моль» - итальянского, вернее, латинского происхождения. В переводе с латыни moles означает «тяжесть, глыба, громада». На современной двухцентовой итальянской монете изображен купол со шпилем «Антонеллиевой громады» {mole A/ilonelliana), самой высокой конструкции в Италии (167,5 м); интересно, что это сооружение считается символом Турина, родного города Авогадро. Соответственно, molecula (с уменьшительным суффиксом -си/о) - «маленькая масса», как корпускула - «маленькое тело» (так во времена Ломоносова называли молекулы). Помимо указанного значения слово motes на латыни означает «дамба, насыпь, укрепленная большими камнями» (вспомним слово «мол» - сооружение в гаванях для защиты судов от морских волн)- Тот же корень в латинском слове mola - «жернов» («громадный камень») и в глаголе то/о - «молоть». Отсюда и молот с молотком, и моляр - зуб, размалывающий твердую пищу, как жернов на мельнице, и даже вредная моль - насекомое, измельчающее, стирающее вещи в муку
Постоянная Авогадро - огромное число, с трудом поддающееся воображению; оно, к примеру, в 4 миллиарда раз больше, чем расстояние от Земли до Солнца, выраженное в миллиметрах! Это означает, что атомы и молекулы очень маленькие - раз их так много помещается в сравнительно небольшом количестве вещества. Еще в XIX веке ученым было очевидно, что. постольку атомы и молекулы очень маленькие и никто их еше не видел, постоянная Авогадро должна быть очень велика. Постепенно физики научились определять размеры молекул и значение постоянной Авогадро - сначала очень грубо, приблизительно, затем все точнее. Прежде всего им было понятно, что обе вели-чины связаны между собой: чем меньше окажутся атомы и молекулы, тем больше получится постоянная Авогадро.
Преподаватели и популяризаторы химии придумали множество эффектных способов, чтобы наглядно показать грандиозность этого числа. Вот некоторые из них.
В пустыне Сахара содержится менее трех молей самых мелких песчинок.
Если объем футбольного мяча увеличить в Л^ раз, то в таком мяче поместится Земной шар. Если же в NA раз увеличить диаметр мяча, то в нем поместится самая большая галактика, содержащая сотни миллиардов звезд. Кстати, число звезд во Вселенной примерно равно постоянной Авогадро.
Если взять 100 г красителя, пометить каким-либо способом все его молекулы, вылить этот краситель в море и подождать, пока он равномерно распределится по всем морям и океанам до самого дна, то, зачерпнув в любом месте Земного шара стакан воды, мы обязательно обнаружим в нем не один десяток «меченых» молекул.
При каждом вдохе человека в его легкие попадает хотя бы несколько молекул кислорода и азога, которые содержались в последнем выдохе Юлия Цезаря (44 год до н. э.).
Если взять моль долларовых бумажек, они покроют все материки двухкилометровым плотным слоем,
В древности на Востоке придумали такую легенду. В сказочном царстве находится огромная гранитная скала. Представим себе, что она имеет форму куба с ребром, равным 1 км. Раз в столетие на скалу садится ворон и чистит об нее клюв. Если предположить, что при этом скала стирается на 0,0001 г. то число лет, за которое от скалы не останется ни одной песчинки, меньше, чем постоянная Авогадро.

ОПРЕДЕЛЕНИЕ

Атом – наименьшая химическая частица.

Многообразие химических соединений обусловлено различным сочетанием атомов химических элементов в молекулы и немолекулярные вещества. Способность же атома вступать в химические соединения, его химические и физические свойства определяются структурой атома. В связи с этим для химии первостепенное значение имеет внутреннее строение атома и в первую очередь структура его электронной оболочки.

Модели строения атома

В начале XIX века Д. Дальтон возродил атомистическую теорию, опираясь на известные к тому времени основополагающие законы химии (постоянства состава, кратных отношений и эквивалентов). Были проведены первые эксперименты по изучению строения вещества. Однако, несмотря на сделанные открытия (атомы одного и того же элементы обладают одними и теми же свойствами, а атомы других элементов – иными свойствами, введено понятие атомной массы), атом считали неделимым.

После получения экспериментальных доказательств (конец XIX начало XX века) сложности строения атома (фотоэффект, катодные и рентгеновские лучи, радиоактивность) было установлено, что атом состоит из отрицательно и положительно заряженных частиц, которые взаимодействуют между собой.

Эти открытия дали толчок к созданию первых моделей строения атома. Одна из перых моделей была предложена Дж. Томсоном (1904) (рис. 1): атом представлялся как «море положительного электричества» с колеблющимися в нем электронами.

После опытов с α-частицами, в 1911г. Резерфорд предложил так называемую планетарную модель строения атома (рис. 1), похожую на строение солнечной системы. Согласно планеетарной модели, в центре атома находится очень маленькое ядро с зарядом Z е, размеры которого приблизительно в 1000000 раз меньше размеров самого атома. Ядро заключает в себе практически всю массу атома и имеет положительный заряд. Вокруг ядра по орбитам движутся электроны, число которых определяется зарядом ядра. Внешняя траектория движения электронов определяет внешние размеры атома. Диаметр атома составляет 10 -8 см, в то время, как диаметр ядра много меньше -10 -12 см.

Рис. 1 Модели строения атома по Томсону и Резерфорду

Опыты по изучению атомных спектров показали несовершенство планетарной модели строения атома, поскольку эта модель противоречит линейчатой структуре атомных спектров. На основании модели Резерфорда, учении Энштейна о световых квантах и квантовой теории излучения планка Нильс Бор (1913) сформулировал постулаты , в которых заключается теория строения атома (рис. 2): электрон может вращаться вокруг ядра не по любым, а только по некоторым определенным орбитам (стационарным), двигаясь по такой орбите он не излучает электромагнитной энергии, излучение (поглощение или испускание кванта электромагнитной энергии) происходит при переходе (скачкообразном) электрона с одной орбиты на другую.

Рис. 2. Модель строения атома по Н. Бору

Накопленный экспериментальный материал, характеризующий строение атома, показал, что свойства электронов, а также других микрообъектов не могут быть описаны на основе представлений классической механики. Микрочастицы подчиняются законам квантовой механики, которая стала основой для создания современной модели строения атома .

Главные тезисы квантовой механики:

— энергия испускается и поглощается телами отдельными порциями – квантами, следовательно, энергия частиц изменяется скачкообразно;

— электроны и другие микрочастицы имеют двойственную природу – проявляет свойства и частицы, и волны (корпускулярно-волновой дуализм);

— квантовая механика отрицает наличие определенных орбит у микрочастиц (для движущихся электронов невозможно определить точное положение, т.к. они движутся в пространстве вблизи ядра, можно лишь определить вероятность нахождения электрона в различных частях пространства).

Пространство вблизи ядра, в котором достаточно велика вероятность нахождения электрона (90%), называется орбиталью .

Квантовые числа. Принцип Паули. Правила Клечковского

Состояние электрона в атоме можно описать с помощью четырех квантовых чисел .

n – главное квантовое число. Характеризует общий запас энергии электрона в атоме и номер энергетического уровня. nприобретает целочисленные значения от 1 до ∞. Наименьшей энергией электрон обладает при n=1; с увеличением n – энергия . Состояние атома, когда его электроны находятся на таких энергетических уровнях, что их суммарная энергия минимальна, называется основным. Состояния с более высокими значениями называются возбужденными. Энергетические уровни обозначаются арабскими цифрами в соответствии со значением n. Электроны можно расположить по семи уровням, поэтому, реально n существует от 1 до 7. Главное квантовое число определяет размеры электронного облака и определяет средний радиус нахождения электрона в атоме.

l – орбитальное квантовое число. Характеризует запас энергии электронов в подуровне и форму орбитали (табл. 1). Принимает целочисленные значения от 0 до n-1. l зависит от n. Если n=1,то l=0, что говорит о том, что на 1-м уровне 1-н подуровень.


m e – магнитное квантовое число. Характеризует ориентацию орбитали в пространстве. Принимает целочисленные значения от –l через 0 до +l. Так, при l=1 (p-орбиталь), m e принимает значения -1, 0, 1 и ориентация орбитали может быть различной (рис. 3).

Рис. 3. Одна из возможных ориентаций в пространстве p-орбитали

s – спиновое квантовое число. Характеризует собственное вращение электрона вокруг оси. Принимает значения -1/2(↓) и +1/2 (). Два электрона на одной орбитали обладают антипараллельными спинами.

Состояние электронов в атомах определяется принципом Паули : в атоме не может быть двух электронов с одинаковым набором всех квантовых чисел. Последовательность заполнения орбиталей электронами определяется правилами Клечковского : орбитали заполняются электронами в порядке возрастания суммы (n+l) для этих орбиталей, если сумма (n+l) одинакова, то первой заполняется орбиталь с меньшим значением n.

Однако, в атоме обычно присутствуют не один, а несколько электронов и, чтобы учесть их взаимодействие друг с другом используют понятие эффективного заряда ядра – на электрон внешнего уровня действует заряд, меньший заряда ядра, вследствие чего внутренние электроны экранируют внешние.

Основные характеристики атома: атомный радиус (ковалентный, металлический, ван-дер-ваальсов, ионный), сродство к электрону, потенциал ионизации, магнитный момент.

Электронные формулы атомов

Все электроны атома образуют его электронную оболочку. Строение электронной оболочки изображается электронной формулой , которая показывает распределение электронов по энергетическим уровням и подуровням. Число электронов на подуровне обозначается цифрой, которая записывается справа вверху от буквы, показывающей подуровень. Например, атом водорода имеет один электрон, который расположен на s-подуровне 1-го энергетического уровня: 1s 1 . Электронная формула гелия, содержащего два электрона записывается так: 1s 2 .

У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

Связь электронного строения атома с положением элемента в Периодической системе

Электронную формулу элемента определяют по его положению в Периодической системе Д.И. Менделеева. Так, номер периода соответствует У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют У элементов второго периода электроны заполняют 2-й энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

У атомов некоторых элементов, наблюдается явление «проскока» электрона с внешнего энергетического уровня на предпоследний. Проскок электрона происходит у атомов меди, хрома, палладия и некоторых других элементов. Например:

24 Cr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1

энергетический уровень, на котором могут находиться не более 8-ми электронов. Вначале электроны заполняют s-подуровень, потом – p-подуровень. Например:

5 B 1s 2 2s 2 2p 1

Номер группы для элементов главных подгрупп равен числу электронов на внешнем энергетическом уровне, такие электроны называют валентными (они участвуют в образовании химической связи). Валентными электронами у элементов побочных подгрупп могут быть электроны внешнего энергетического уровня и d-подуровня предпоследнего уровня. Номер группы элементов побочных подгрупп III-VII групп, а также у Fe, Ru, Os соответствует общему числу электронов на s-подуровне внешнего энергетического уровня и d-подуровне предпоследнего уровня

Задания:

Изобразите электронные формулы атомов фосфора, рубидия и циркония. Укажите валентные электроны.

Ответ:

15 P 1s 2 2s 2 2p 6 3s 2 3p 3 Валентные электроны 3s 2 3p 3

37 Rb 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 1 Валентные электроны 5s 1

40 Zr 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 2 5s 2 Валентные электроны 4d 2 5s 2

Тот простой факт, что всё вокруг состоит из мельчайших частиц вещества - молекул и атомов, - на самом деле обладает огромной научной силой. Из одного лишь этого утверждения можно вывести большое число следствий, дающих качественное объяснение многим физическим явлениям. Если бы вдруг человечество «забыло» все естественнонаучные знания, накопленные за многие века, то, уцепившись лишь за этот факт и пользуясь научным методом, оно смогло бы очень быстро восстановить азы многих разделов физики и химии.

Про атомарную структуру материи дети узнают еще в начальной школе. Но атомы не видны ни глазом, ни в оптический микроскоп. Более того, в обычных экспериментах с веществом, когда мы измеряем разнообразные характеристики материи (плотность , теплоемкость , удельную теплоту плавления и испарения , вязкость , силу поверхностного натяжения жидкости и так далее), мы вообще можем не задумываться о том, что она состоит из отдельных частиц. Современная физика, конечно, позволяет «разглядеть» отдельные атомы с помощью сложных приборов. Но возникает вопрос: существует ли какой-то простой способ определить типичный размер молекул, не прибегая к такой технике? Оказывается, да.

Задача

Вооружившись лишь фактом, что всё состоит из атомов, оцените размер молекулы воды на основании (некоторых из) перечисленных выше макроскопических характеристик. Численные значения этих параметров для воды можно легко найти в справочниках или в интернете.


Подсказка

Сразу стоит подчеркнуть, что решения, которые опираются на число Авогадро или на свойства отдельных молекул, - «обманные», поскольку они неявным образом уже используют размер молекул. Например, требуемую оценку легко получить из плотности и молярной массы воды и числа Авогадро. Однако число Авогадро, которое связывает микромир с макромиром и «знает» про размеры атомов, в чисто макроскопическом эксперименте не проявляется и само требует экспериментального измерения.

Размер атомов предлагается оценить (разумеется, не точно, а только по порядку величины) на основании именно макроскопических характеристик вещества.

Решение

Размер молекул можно извлечь из плотности, коэффициента поверхностного натяжения и удельной теплоты парообразования. Сделаем это двумя способами.

Способ 1. Жидкость состоит из молекул, но при этом сохраняет свой объем, а не разлетается на отдельные частицы, как газ. Это значит, во-первых, что молекулы в жидкости держатся друг относительно друга на некотором определенном расстоянии, по порядку величины равном диаметру самой молекулы (d ), а во-вторых, что каждое парное взаимодействие между молекулами характеризуется некоторой энергией связи (U ). Величины d и U - микроскопические, их численные значения мы заранее не знаем.

При испарении жидкость превращается в разреженный газ, в котором все связи между всеми молекулами можно считать разорванными. Удельная теплота парообразования E , измеряемая в Дж/кг, есть просто-напросто сумма всех межмолекулярных энергий связи, которые изначально были в килограмме воды. Помножив удельную теплоту парообразования на плотность ρ и на (неизвестный пока) объем, занимаемый одной молекулой (порядка d 3), мы получим энергию связей в расчете на одну молекулу. Эта величина раза в 2–3 больше U - ведь каждая молекула обычно связана с несколькими (4–6) соседями: E ρd 3 = 2U .

С другой стороны, явление поверхностного натяжения состоит в том, что всякая свободная поверхность жидкости характеризуется «лишней» энергией, пропорциональной площади поверхности: E пов = σS . Эту энергию можно легко измерить на опыте и извлечь отсюда коэффициент поверхностного натяжения σ. Микроскопически, эта энергия возникает из-за того, что в самом приповерхностном слое жидкости есть молекулы с «неработающими связями», то есть со связями, которые торчат наружу, в пустоту, а не замкнуты на соседние молекулы. Таких связей мало, скажем одна на каждую молекулу, и энергия этой «неработающей связи» примерно равна U . Поскольку каждая поверхностная молекула занимает площадь примерно d 2 , эту же величину U можно записать как σd 2 .

Приравнивая величину U , полученную этими двумя способами, находим типичный размер: d = 2σ/E ρ.

Способ 2. Возьмем сферическую каплю жидкости и разделим ее на две капли. Суммарный объем не изменился, но площадь поверхности возросла, а значит, возросла и энергия поверхностного натяжения. Поэтому на такое разделение нам надо затратить энергию, равную разности поверхностных энергий вначале и в конце. Будем дробить каплю всё дальше и дальше, пока не дойдем до «капель» размером с молекулу. Строго говоря, при таких размерах про поверхностное натяжение уже говорить нельзя, но для самых грубых оценок можно тем не менее сосчитать получившуюся «суммарную площадь поверхности», домножить ее на σ и найти, какую энергию надо затратить на такое разделение. Но разделение жидкости на отдельные «капли» размером с молекулу и есть процесс парообразования. Таким образом тоже можно получить формулу наподобие приведенной выше, но только с чуть отличающимся численным коэффициентом.

Осталось подставить числа. Плотность воды 1000 кг/м 3 , коэффициент поверхностного натяжения 0,07 Дж/м 2 , удельная теплота парообразования 2,3 МДж/кг. Размер молекулы отсюда получается 0,6·10 –10 м . Это примерно в 3 раза меньше реального размера молекулы, что совсем неплохо для столь грубой оценки.

Послесловие

Это, конечно, не единственный способ узнать размеры молекул на основании макроскопических данных, однако все подобные методы дают лишь очень грубую оценку по порядку величины. Намного более аккуратно измерить размеры можно при рассеянии рентгеновских лучей (а также электронов или нейтронов) с длиной волны меньше нанометра на кристаллах. Дифракционный узор показывает не только размеры кристаллической ячейки, но и рассказывает о том, как атомы в ней расположены друг относительно друга.

Интересно отметить, что еще в начале XX века далеко не все ученые придерживались атомистической картины строения вещества. Ключевыми моментами, доказавшими реальность молекул, было описание Эйнштейном броуновского движения и закона диффузии, а также обнаружение Перреном седиментационного равновесия (Нобелевская премия по физике за 1926 год). В обоих экспериментах микроскопически частицы вещества, размер которых можно было определить через наблюдение в микроскоп, вели себя в чём-то похоже на отдельные молекулы вещества, что и позволило «навести мосты» между микромиром и миром повседневных явлений.

АТОМ (от греч. atomos - неделимый), наименьшая частица хим. элемента, его св-в. Каждому хим. элементу соответствует совокупность определенных атомов. Связываясь друг с другом, атомы одного или разных элементов образуют более сложные частицы, напр. . Все многообразие хим. в-в (твердых, жидких и газообразных) обусловлено разл. сочетаниями атомов между собой. Атомы могут существовать и в своб. состоянии (в , ). Св-ва атома, в т. ч. важнейшая для способность атома образовывать хим. соед., определяются особенностями его строения.

Общая характеристика строения атома. Атом состоит из положительно заряженного ядра, окруженного облаком отрицательно заряженных . Размеры атома в целом определяются размерами его электронного облака и велики по сравнению с размерами _ядра атома (линейные размеры атома ~ 10~ 8 см, его ядра ~ 10" -10" 13 см). Электронное облако атома не имеет строго определенных границ, поэтому размеры атома в значит. степени условны и зависят от способов их определения (см. ). Ядро атома состоит из Z и N , удерживаемых ядерными силами (см. ). Положит. заряд и отрицат. заряд одинаковы по абс. величине и равны е= 1,60*10 -19 Кл; не обладает элек-трич. зарядом. Заряд ядра +Ze - осн. характеристика атома, обусловливающая его принадлежность к определенному хим. элементу. элемента в периодич. системе Менделеева () равен числу в ядре.

В электрически нейтральном атоме число в облаке равно числу в ядре. Однако при определенных условиях он может терять или присоединять , превращаясь соотв. в положит. или отрицат. , напр. Li + , Li 2+ или О - , О 2- . Говоря об атомах определенного элемента, подразумевают как нейтральные атомы, так и этого элемента.

Масса атома определяется массой его ядра; масса (9,109*10 -28 г) примерно в 1840 раз меньше массы или ( 1,67*10 -24 г), поэтому вклад в массу атома незначителен. Общее число и А = Z + N наз. . и заряд ядра указываются соотв. верхним и нижним индексами слева от символа элемента, напр. 23 11 Na. Вид атомов одного элемента с определенным значением N наз. . Атомы одного и того же элемента с одинаковыми Z и разными N наз. этого элемента. Различие масс мало сказывается на их хим. и физ. св-вах. Наиболее значит, отличия ()наблюдаются у вследствие большой относит. разницы в массах обычного атома (), D и Т. Точные значения масс атомов определяют методами .

Стационарное состояние одноэлектронного атома однозначно характеризуется четырьмя квантовыми числами: п, l, m l и m s . Энергия атома зависит только от п, и уровню с заданным п соответствует ряд состояний, отличающихся значениями l, m l , m s . Состояния с заданными п и l принято обозначать как 1s, 2s, 2p, 3s и т.д., где цифры указывают значения л, а буквы s, p, d, f и дальше по латинскому соответствуют значениям д = 0, 1, 2, 3, ... Число разл. состояний с заданными п и д равно 2(2l+ 1) числу комбинаций значений m l и m s . Общее число разл. состояний с заданным п равно , т. е. уровням со значениями п = 1, 2, 3, ... соответствуют 2, 8, 18, ..., 2n 2 разл. . Уровень, к-рому соответствует лишь одно (одна волновая ф-ция), наз. невырожденным. Если уровню соответствует два или более , он наз. вырожденным (см. ). В атоме уровни энергии вырождены по значениям l и m l ; вырождение по m s имеет место лишь приближенно, если не учитывать взаимод. спинового магн. момента с магн. полем, обусловленным орбитальным движением в электрич. поле ядра (см. ). Это - релятивистский эффект, малый в сравнении с кулоновским взаимод., однако он принципиально существен, т.к. приводит к дополнит. расщеплению уровней энергии, что проявляется в в виде т. наз. тонкой структуры.

При заданных n, l и m l квадрат модуля волновой ф-ции определяет для электронного облака в атоме среднее распределение . Разл. атома существенно отличаются друг от друга распределением (рис. 2). Так, при l = 0 (s-состояния) отлична от нуля в центре атома и не зависит от направления (т.е. сферически симметрична), для остальных состояний она равна нулю в центре атома и зависит от направления.

Рис. 2. Форма электронных облаков для различных состояний атома .

В многоэлектронных атомах вследствие взаимного электростатич. отталкивания существенно уменьшается их связи с ядром. Напр., энергия отрыва от Не + равна 54,4 эВ, в нейтральном атоме Не она значительно меньше - 24,6 эВ. Для более тяжелых атомов связь внеш. с ядром еще слабее. Важную роль в многоэлектронных атомах играет специфич. , связанное с неразличимостью , и тот факт, что подчиняются , согласно к-рому в каждом , характеризуемом четырьмя квантовыми числами, не может находиться более одного . Для многоэлектронного атома имеет смысл говорить только о всего атома в целом. Однако приближенно, в т. наз. одноэлектронном приближении, можно рассматривать отдельных и характеризовать каждое одноэлектронное состояние (определенную орбиталъ, описываемую соответствующей ф-цией) совокупностью четырех квантовых чисел n, l, m l и m s . Совокупность 2(2l+ 1) в состоянии с данными п и l образует электронную оболочку (наз. также подуровнем, подоболочкой); если все эти состояния заняты , оболочка наз. заполненной (замкнутой). Совокупность 2п 2 состояний с одним и тем же n, но разными l образует электронный слой (наз. также уровнем, оболочкой). Для п= 1, 2, 3, 4, ... слои обозначают символами К, L, M, N, ... Число в оболочках и слоях при полном заполнении приведены в таблице:

Между стационарными состояниями в атоме возможны . При переходе с более высокого уровня энергии Е i на более низкий E k атом отдает энергию (E i - E k), при обратном переходе получает ее. При излучательных переходах атом испускает или поглощает квант электромагн. излучения (фотон). Возможны и , когда атом отдает или получает энергию при взаимод. с др. частицами, с к-рыми он сталкивается (напр., в ) или длительно связан (в. Хим. св-ва определяются строением внеш. электронных оболочек атомов, в к-рых связаны сравнительно слабо (энергии связи от неск. эВ до неск. десятков эВ). Строение внеш. оболочек атомов хим. элементов одной группы (или подгруппы) периодич. системы аналогично, что и обусловливает сходство хим. св-в этих элементов. При увеличении числа в заполняющейся оболочке их энергия связи, как правило, увеличивается; наиб. энергией связи обладают в замкнутой оболочке. Поэтому атомы с одним или неск. в частично заполненной внеш. оболочке отдают их в хим. р-циях. Атомы, к-рым не хватает одного или неск. для образования замкнутой внеш. оболочки, обычно принимают их. Атомы , обладающие замкнутыми внеш. оболочками, при обычных условиях не вступают в хим. р-ции.

Строение внутр. оболочек атомов, к-рых связаны гораздо прочнее (энергия связи 10 2 -10 4 эВ), проявляется лишь при взаимод. атомов с быстрыми частицами и фотонами высоких энергий. Такие взаимод. определяют характер рентгеновских спектров и рассеяние частиц ( , ) на атомах (см. ). Масса атома определяет такие его физ. св-ва, как импульс, кинетич. энергия. От механических и связанных с ними магн. и электрич. моментов ядра атома зависят нек-рые тонкие физ. эффекты ( зависит от частоты излучения, что обусловливает зависимость от нее показателя преломления в-ва, связанного с атома. Тесная связь оптич. св-в атома с его электрич. св-вами особенно ярко проявляется в оптич. спектрах.

===
Исп. литература для статьи «АТОМ» : Карапетьянц М. X., Дракин С.И., Строение , 3 изд., М., 1978; Шло лье кий Э. В., Атомная физика, 7 изд., т. 1-2, М., 1984. М. А. Ельяшевич.

Страница «АТОМ» подготовлена по материалам .

Атом - это мельчайшая частица химического вещества, которая способна сохранять его свойства. Слово «атом» происходит от древнегреческого «atomos», что означает «неделимый». В зависимости о того, сколько и каких частиц находится в атоме, можно определить химический элемент .

Кратко о строении атома

Как можно вкратце перечислить основные сведения о является частицей с одним ядром, которое заряжено положительно. Вокруг этого ядра расположено отрицательно заряженное облако из электронов. Каждый атом в своем обычном состоянии является нейтральным. Размер этой частицы полностью может быть определен размером электронного облака, которое окружает ядро.

Само ядро, в свою очередь, тоже состоит из более мелких частиц - протонов и нейтронов. Протоны являются положительно заряженными. Нейтроны не несут в себе никакого заряда. Однако протоны вместе с нейтронами объединяются в одну категорию и носят название нуклонов. Если необходимы основные сведения о строении атома кратко, то эта информация может быть ограничена перечисленными данными .

Первые сведения об атоме

О том же, что материя может состоять из мелких частиц, подозревали еще древние греки. Они полагали, что все существующее и состоит из атомов. Однако такое воззрение носило чисто философский характер и не может быть трактовано научно.

Первым основные сведения о строении атома получил английский ученый Именно этот исследователь сумел обнаружить, что два химических элемента могут вступать в различные соотношения, и при этом каждая такая комбинация будет представлять собой новое вещество. Например, восемь частей элемента кислорода порождают собой углекислый газ. Четыре части кислорода - угарный газ.

В 1803 году Дальтон открыл так называемый закон кратных отношений в химии. При помощи косвенных измерений (так как ни один атом тогда не мог быть рассмотрен под тогдашними микроскопами) Дальтон сделал вывод об относительном весе атомов .

Исследования Резерфорда

Почти столетие спустя основные сведения о строении атомов были подтверждены еще одним английским химиком - Ученый предложил модель электронной оболочки мельчайших частиц.

На тот момент названная Резерфордом «Планетарная модель атома» была одним из важнейших шагов, которые могла сделать химия. Основные сведения о строении атома свидетельствовали о том, что он похож на Солнечную систему: вокруг ядра по строго определенным орбитам вращаются частицы-электроны, подобно тому, как это делают планеты.

Электронная оболочка атомов и формулы атомов химических элементов

Электронная оболочка каждого из атомов содержит ровно столько электронов, сколько находится в его ядре протонов. Именно поэтому атом является нейтральным. В 1913 году еще один ученый получил основные сведения о строении атома. Формула Нильса Бора была похожа на ту, что получил Резерфорд. Согласно его концепции, электроны также вращаются вокруг ядра, расположенного в центре. Бор доработал теорию Резерфорда, внес стройность в ее факты.

Уже тогда были составлены формулы некоторых химических веществ. Например, схематически строение атома азота обозначается как 1s 2 2s 2 2p 3 , строение атома натрия выражается формулой 1s 2 2s 2 2p 6 3s 1 . Через эти формулы можно увидеть, какое количество электронов движется по каждой из орбиталей того или иного химического вещества.

Модель Шредингера

Однако затем и эта атомная модель устарела. Основные сведения о строении атома, известные науке сегодня, во многом стали доступны благодаря исследованиям австрийского физика

Он предложил новую модель его строения - волновую. К этому времени ученые уже доказали, что электрон наделен не только природой частицы, но обладает свойствами волны.

Однако у модели Шредингера и Резерфорда имеются и общие положения. Их теории сходны в том, что электроны существуют на определенных уровнях.

Такие уровни также называются электронными слоями. При помощи номера уровня может быть охарактеризована энергия электрона. Чем выше слой, тем большей энергией он обладает. Все уровни считаются снизу вверх, таким образом, номер уровня соответствует его энергии. Каждый из слоев в электронной оболочке атома имеет свои подуровни. При этом у первого уровня может быть один подуровень, у второго - два, у третьего - три и так далее (см. приведенные выше электронные формулы азота и натрия).

Еще более мелкие частицы

На данный момент, конечно, открыты еще более мелкие частицы, нежели электрон, протон и нейтрон. Известно, что протон состоит из кварков. Существуют и еще более мелкие частицы мироздания - например, нейтрино, который по своим размерам в сто раз меньше кварка и в миллиард раз меньше протона.

Нейтрино - это настолько мелкая частица, что она в 10 септиллионов раз меньше, чем, к примеру, тираннозавр. Сам тираннозавр во столько же раз меньших размеров, чем вся обозримая Вселенная.

Основные сведения о строении атома: радиоактивность

Всегда было известно, что ни одна химическая реакция не может превратить один элемент в другой. Но в процессе радиоактивного излучения это происходит самопроизвольно.

Радиоактивностью называют способность ядер атомов превращаться в другие ядра - более устойчивые. Когда люди получили основные сведения о строении атомов, изотопы в определенной мере могли служить воплощением мечтаний средневековых алхимиков.

В процессе распада изотопов испускается радиоактивное излучение. Впервые такое явление было обнаружено Беккерелем. Главный вид радиоактивного излучения - это альфа-распад. При нем происходит выброс альфа-частицы. Также существует бета-распад, при котором из ядра атома выбрасывается, соответственно, бета-частица.

Природные и искусственные изотопы

В настоящее время известно порядка 40 природных изотопов. Их большая часть расположена в трех категориях: урана-радия, тория и актиния. Все эти изотопы можно встретить в природе - в горных породах, почве, воздухе. Но помимо них, известно также порядка тысячи искусственно выведенных изотопов, которые получают в ядерных реакторах. Многие их таких изотопов используются в медицине, особенно в диагностике .

Пропорции внутри атома

Если представить себе атом, размеры которого будут сопоставимы с размерами международного спортивного стадиона, тогда можно визуально получить следующие пропорции. Электроны атома на таком «стадионе» будут располагаться на самом верху трибун. Каждый из них будет иметь размеры меньше, чем булавочная головка. Тогда ядро будет расположено в центре этого поля, а его размер будет не больше, чем размер горошины.

Иногда люди задают вопрос, как в действительности выглядит атом. На самом деле он в буквальном смысле слова не выглядит никак - не по той причине, что в науке используются недостаточно хорошие микроскопы. Размеры атома находятся в тех областях, где понятие «видимости» просто не существует.

Атомы обладают очень малыми размерами. Но насколько малы в действительности эти размеры? Факт состоит в том, что самая маленькая, едва различимая человеческим глазом крупица соли содержит в себе порядка одного квинтиллиона атомов.

Если же представить себе атом такого размера, который мог бы уместиться в человеческую руку, то тогда рядом с ним находились бы вирусы 300-метровой длины. Бактерии имели бы длину 3 км, а толщина человеческого волоса стала бы равна 150 км. В лежачем положении он смог бы выходить за границы земной атмосферы. А если бы такие пропорции были действительны, то человеческий волос в длину смог бы достигать Луны. Вот такой он непростой и интересный атом, изучением которого ученые продолжают заниматься и по сей день.