Может ли летучая мышь посылая сигнал частотой. Как ориентируются летучие мыши

Летучие мыши обычно живут огромными стаями в пещерах, в которых они прекрасно ориентируются в полной темноте. Влетая и вылетая из пещеры, каждая мышь издает неслышимые нами звуки. Одновременно эти звуки издают тысячи мышей, но это никак не мешает им прекрасно ориентироваться в пространстве в полной темноте и летать, не сталкиваясь друг с другом. Почему летучие мыши могут уверенно летать в полнейшей темноте, не натыкаясь на препятствия? Удивительное свойство этих ночных животных – умение ориентироваться в пространстве без помощи зрения – связано с их способностью испускать и улавливать ультразвуковые волны.

Оказалось, что во время полёта мышь излучает короткие сигналы на частоте около 80 кГц, а затем принимает отражённые эхо-сигналы, которые приходят к ней от ближайших препятствий и от пролетающих вблизи насекомых.

Для того, чтобы сигнал был препятствием отражён, наименьший линейный размер этого препятствия должен быть не меньше длины волны посылаемого звука. Использование ультразвука позволяет обнаружить предметы меньших размеров, чем можно было бы обнаружить, используя более низкие звуковые частоты. Кроме того, использование ультразвуковых сигналов связано с тем, что с уменьшением длины волны легче реализуется направленность излучения, а это очень важно для эхолокации.

Реагировать на тот или иной объект мышь начинает на расстоянии порядка 1 метра, при этом длительность посылаемых мышью ультразвуковых сигналов уменьшается примерно в 10 раз, а частота их следования увеличивается до 100–200 импульсов (щелчков) в секунду. То есть, заметив объект, мышь начинает щелкать более часто, а сами щелчки становятся более короткими. Наименьшее расстояние, которое мышь может определить таким образом, составляет примерно 5 см.

Во время сближения с объектом охоты летучая мышь как бы оценивает угол между направлением своей скорости и направлением на источник отражённого сигнала и изменяет направление полёта так, чтобы этот угол становился все меньше и меньше.

Может ли летучая мышь, посылая сигнал частотой 80 кГц, обнаружить мошку размером 1 мм? Скорость звука в воздухе принять равной 320 м/с. Ответ поясните.

Конец формы

Начало формы

Для ультразвуковой эхолокации мыши используют волны частотой

1) менее 20 Гц

2) от 20 Гц до 20 кГц

3) более 20 кГц

4) любой частоты

Конец формы

Начало формы

Умение великолепно ориентироваться в пространстве связано у летучих мышей с их способностью излучать и принимать

1) только инфразвуковые волны

2) только звуковые волны

3) только ультразвуковые волны

4) звуковые и ультразвуковые волны


Запись звука

Возможность записывать звуки и затем воспроизводить их была открыта в 1877 году американским изобретателем Т.А. Эдисоном. Благодаря возможности записывать и воспроизводить звуки появилось звуковое кино. Запись музыкальных произведений, рассказов и даже целых пьес на граммофонные или патефонные пластинки стала массовой формой звукозаписи.

На рисунке 1 дана упрощенная схема механического звукозаписывающего устройства. Звуковые волны от источника (певца, оркестра и т.д.) попадают в рупор 1, в котором закреплена тонкая упругая пластинка 2, называемая мембраной. Под действием звуковой волны мембрана колеблется. Колебания мембраны передаются связанному с ней резцу 3, острие которого чертит при этом на вращающемся диске 4 звуковую бороздку. Звуковая бороздка закручивается по спирали от края диска к его центру. На рисунке показан вид звуковых бороздок на пластинке, рассматриваемых через лупу.

Диск, на котором производится звукозапись, изготавливается из специального мягкого воскового материала. С этого воскового диска гальванопластическим способом снимают медную копию (клише). При этом используется осаждение на электроде чистой меди при прохождении электрического тока через раствор ее солей. Затем с медной копии делают оттиски на дисках из пластмассы. Так получают граммофонные пластинки.

При воспроизведении звука граммофонную пластинку ставят под иглу, связанную с мембраной граммофона, и приводят пластинку во вращение. Двигаясь по волнистой бороздке пластинки, конец иглы колеблется, вместе с ним колеблется и мембрана, причем эти колебания довольно точно воспроизводят записанный звук.

При механической записи звука используется камертон. При увеличении времени звучания камертона в 2 раза

1) длина звуковой бороздки увеличится в 2 раза

2) длина звуковой бороздки уменьшится в 2 раза

3) глубина звуковой бороздки увеличится в 2 раза

4) глубина звуковой бороздки уменьшится в 2 раза

Конец формы


2. Молекулярная физика

Поверхностное натяжение

В окружающем нас мире повседневных явлений действует сила, на которую обычно не обращают внимания. Сила эта сравнительно невелика, её действие не вызывает мощных эффектов. Тем не менее, мы не можем налить воду в стакан, вообще ничего не можем проделать с той или иной жидкостью без того, чтобы не привести в действие силы, которые называются силами поверхностного натяжения.Эти силы в природе и в нашей жизни играют немалую роль. Без них мы не могли бы писать перьевой ручкой, из неё сразу вылились бы все чернила. Нельзя было бы намылить руки, поскольку пена не смогла бы образоваться. Слабый дождик промочил бы нас насквозь. Нарушился бы водный режим почвы, что оказалось бы гибельным для растений. Пострадали бы важные функции нашего организма.

Проще всего уловить характер сил поверхностного натяжения у плохо закрытого или неисправного водопроводного крана. Капля растёт постепенно, со временем образуется сужение – шейка, и капля отрывается.

Вода оказывается как бы заключённой в эластичный мешочек, и этот мешочек разрывается, когда сила тяжести превысит его прочность. В действительности, конечно, ничего, кроме воды, в капле нет, но сам поверхностный слой воды ведёт себя как растянутая эластичная плёнка.

Такое же впечатление производит плёнка мыльного пузыря. Она похожа на тонкую растянутую резину детского шарика. Если осторожно положить иглу на поверхность воды, то поверхностная плёнка прогнётся и не даст игле утонуть. По этой же причине водомерки могут скользить по поверхности воды, не проваливаясь в неё.

В своём стремлении сократиться поверхностная плёнка придавала бы жидкости сферическую форму, если бы не тяжесть. Чем меньше капелька, тем большую роль играют силы поверхностного натяжения по сравнению с силой тяжести. Поэтому маленькие капельки близки по форме к шару. При свободном падении возникает состояние невесомости, и поэтому дождевые капли почти строго шарообразны. Из-за преломления солнечных лучей в этих каплях возникает радуга.

Причиной поверхностного натяжения является межмолекулярное взаимодействие. Молекулы жидкости взаимодействуют между собой сильнее, чем молекулы жидкости и молекулы воздуха, поэтому молекулы поверхностного слоя жидкости стремятся сблизиться друг с другом и погрузиться вглубь жидкости. Это позволяет жидкости принимать форму, при которой число молекул на поверхности было бы минимальным, а минимальную поверхность при данном объёме имеет шар. Поверхность жидкости сокращается, и это приводит к поверхностному натяжению.

Можно подумать, что нет ничего общего между радиолокатором и летучей мышью, между аппаратом, которым гордится техника XX века, и маленьким зверьком с большими крыльями. Однако это не так.

Летучие мыши - очень своеобразные животные. Они водятся главным образом на юге. Это ночные жители. Днем они спят, а как только скроется солнце, вылетают из своих укрытий. Такой образ жизни крылатых зверьков затруднял наблюдения за ними, и про них слагались легенды.

Летучие мыши обладают острым слухом. Он помогает им охотиться за насекомыми по звуку. Они имеют очень большие уши и рот.

Уши летучих мышей чрезвычайно подвижны. Услышав малейший шум, мышь поднимает их и вслушивается, а при сильном шуме быстро отгибает назад.

Давно замечено, что летучие мыши могут летать в полной темноте, не натыкаясь на препятствия. Полтораста лет назад один ученый натуралист решил выяснить, что же помогает им ориентироваться во мраке.

Он залепил летучей мыши глаза и пустил ее в темную комнату. Ослепленная мышь летала мимо препятствий, ловко огибая их.

В перегородке сделали отверстие. Мышь искусно пролетела сквозь него. Комнату перетянули вдоль и поперек проволокой, увешанной колокольчиками. Лишенная зрения, мышь часами летала по комнате и ни разу не задела за проволоку; колокольчики молчали.

Провели опыт с другой мышью - повторилось то же самое. Тогда покрыли мышь лаком. Лишенная осязания, она попрежнему летала по комнате, не наталкиваясь на проволоку.

Мышь поочередно лишали каждого из органов чувств. Это нисколько не влияло на полет: она летала так же уверенно.

Наконец ей заткнули уши. Она взлетела, и сразу же по комнате зазвонили колокольчики. Мышь потеряла ориентировку и металась, натыкаясь на препятствия. Стало ясно, что слух, тончайший слух, позволяет мыши облетать преграды, которые встречаются на пути.

Но как же производится такая точная ориентировка? Где тот источник звука, который помогает мыши в ее искусном полете? Ни один биолог не мог на это ответить. Тайна летучих мышей долго оставалась неразгаданной.

В 1920 году было высказано предположение, не издают ли мыши особый звук, не слышимый человеком. В то время, когда проводились первые опыты с летучими мышами, никто об этом не догадывался. Тогда не знали о существовании ультразвука, который хорошо изучен в настоящее время.

Если число колебаний частиц воздуха больше 20 тысяч в секунду, человек такой высокий тон услышать не может. Это и есть ультразвук. То, что мы слышим, - лишь небольшая часть тех звуков, которые существуют в природе.

В 1942 году биологи вновь подвергли испытанию летучих мышей. Но теперь они уже были вооружены достижениями науки XX века. Биологи не только повторили все старые опыты, но и дополнили их тем, что завязывали мыши рот. Это действовало на нее точно так же, как и лишение слуха.

Предположение об ультразвуке начинало подтверждаться. Но наука требует совершенно четких, неопровержимых доказательств. Если ультразвук услышать нельзя, ученые решили его увидеть и при помощи особой аппаратуры записали на ленту. На ней отпечатались следы колебаний очень высокой частоты.

Когда их подсчитали, оказалось, что мышь издает звук чрезвычайно высокого тона - от 25 тысяч до 70 тысяч звуковых колебаний в секунду.

После кропотливых опытов выяснилось, что летучая мышь издает звук и сама же воспринимает его после отражения от препятствий.

Запись ультразвука, издаваемого летучей мышью, раскрыла, как мышь пользуется своим аппаратом для ориентировки. Оказалось. что мышь издает ультразвук с перерывами.

Ультразвуковое эхо предупреждает летучую мышь о препятствии на ее пути

После очень короткого «выкрика» она замолкает. Затем «кричит» снова и вновь смолкает. Таких выкриков она издает в секунду около десяти перед взлетом, около тридцати в полете и около шестидесяти, когда подлетает близко к препятствию.

Очередной выкрик делается сразу же после того, как вернется отраженный звук. Чем короче путь до преграды, тем быстрее возвращается эхо и тем чаще вскрикивает мышь. Очевидно, по частоте этих выкриков она и чувствует расстояние до препятствия.

Летучая мышь пользуется звуковыми волнами почти так же, как в радиолокации пользуются радиоволнами. Это своеобразный локатор с применением ультразвука.

Слышимый человеком звук для такой цели не подходит. Он не имеет тех свойств, какими обладает ультразвук. Ультразвуковые волны очень короткие, поэтому их чрезвычайно легко посылать узким пучком. Вдобавок они хорошо отражаются от незначительных препятствий и дают отражение даже от проволоки и веток. А это как раз необходимо для того, чтобы обнаружить самые мелкие преграды, отличить их одну от другой и определить направление.

Когда мышь находится в полете, ее рот действует, как звуковой «прожектор». Он как бы «освещает» путь узким звуковым пучком. Огромные ушные раковины мыши направляются в ту же сторону и ловят отраженный ультразвук.

Такая разведка звуком работает превосходно. Если путь свободен, мышь летит прямо, если же на пути преграда, мышь услышит это и свернет в сторону. Предельная дальность, на какой мышь чувствует препятствие, около 25 метров.

Но есть препятствия, которые она все же обнаружить не может. Биологи часто наблюдали, что мышь, искусно облетавшая в темноте все преграды, наталкивалась на человеческую голову. Это вызывало полное недоумение, но теперь можно объяснить такое странное поведение мыши.

Волосы, очень сильно поглощая ультразвук, не дают отражения. А раз нет эха, препятствие не обнаруживается и мышь легко может наткнуться на человеческую голову. Однако в жизни летучих мышей это случается редко, они с успехом пользуются природным звуковым локатором в своих ночных полетах.

Бабочка медведица Bertholdia trigona - единственное известное в природе животное, способное защищаться от летучих мышей путем глушения их локационных сигналов.Мыши не могут научиться ловить этот вид медведиц, издающий характерные ультразвуковые щелчки. Однако как именно действуют щелчки бабочек B. trigona на летучих мышей, было неизвестно. Американские биологи поставили поведенческие эксперименты, в которых они проверяли три возможных механизма. Оказалось, что сигналы, издаваемые B. trigona , уменьшают точность, с которой летучая мышь определяет расстояния до нее. В результате издаваемых бабочкой щелчков летучая мышь меняет характер своих сигналов, что еще более затрудняет возможность поймать бабочку. Авторы считают, что такое поведение B. trigona могло возникнуть из более древнего способа защиты, известного у некоторых бабочек, - когда акустическая сигнализация сопровождается выделением химических веществ, отпугивающих хищника.

Летучие мыши и ночные бабочки соревнуются в эволюционной гонке по крайней мере в течение 50 миллионов лет. В процессе этой борьбы бабочки выработали достаточно простую конструкцию слуховых органов , которая способствует быстрому предупреждению о приближающейся опасности и запуску реакции избегания хищника. Бабочки из семейства медведиц , или Arctiidae, кроме того, способны издавать ультразвуковые щелчки, причем разные виды делают это по-разному. Многие из них издают щелчки достаточно редко, но акустический сигнал сопровождается выделением пахучих веществ, которые отпугивают летучих мышей. Другие виды научились подражать этим несъедобным бабочкам, щелкая и не выделяя никаких запахов (Barber, Conner, 2007). Еще один из способов защиты - щелканье в целях испугать неопытную летучую мышь. Этот способ, однако, не очень надежен, так как мыши учатся и через несколько попыток перестают обращать внимание на щелканье бабочки.

Недавно американские ученые из Университета Уэйк-Фореста показали, что один вид медведиц, Bertholdia trigona, может издавать частые ультразвуковые сигналы, которые глушат эхолокационные сигналы летучих мышей (Corcoran et al., 2009). Замечательно, что летучие мыши не способны научиться бороться с этой преградой: после многочисленных попыток мыши так и не удается поймать бабочку. Теперь те же авторы поставили задачу выяснить механизм, с помощью которого B. trigona так умело защищает себя (Corcoran et al., 2011). Они предложили три гипотезы.

Согласно первой - гипотезе иллюзорного эха , - летучая мышь может путать сигналы бабочки с эхом собственного сигнала от объекта, которого не существует. В этом случае мышь должна менять траекторию полета, улетая от несуществующего объекта. Согласно второй - гипотезе дистанционной помехи , - сигналы, издаваемые бабочкой, могут уменьшать точность определения летучей мышью расстояния до жертвы. Это может происходить в том случае, если щелчки бабочки опережают эхо от собственного сигнала летучей мыши. Наконец, согласно третьей - гипотезе маскировки , - сигналы бабочки могут полностью маскировать ее, и она оказывается «невидимой» для летучей мыши.

Поведение летучей мыши в эксперименте может показать, какая гипотеза правильная. Мышь либо будет менять траекторию полета, либо будет пытаться поймать бабочку и промахиваться, либо не будет воспринимать бабочку вообще и будет продолжать полет.

Поведенческие эксперименты проводили в течение семи ночей в звуконепроницаемой комнате размером 5,8×4,0×3,0 м. В экспериментах использовали широко распространенного в Америке бурого кожана, Eptesicus fuscus, относящегося к семейству гладконосых летучих мышей . Эксперименты проводили на трех особях E. fuscus .

Предварительно было показано, что все три мыши охотно ели исследуемый вид медведиц в том случае, если бабочки не издавали звуков (отсутствие акустических сигналов было зафиксировано у 22% бабочек). Перед каждым экспериментом проверяли, насколько надежно мышь ловит контрольных бабочек, не издающих сигналов. В качестве контроля использовали Galleria melonella . После этого каждую ночь 16 бабочек (4 - B. trigona , 4 - другие виды медведиц, не издающие звук, 8 - G. melonella ) в случайном порядке предъявляли одной летучей мыши. Бабочки были закреплены на нити длиной 60 см. Мышь могла атаковать бабочку несколько раз, но для анализа учитывали только первую атаку.

Все эксперименты записывались на две скоростные видеокамеры (250 кадров в секунду). Эти записи анализировали с помощью компьютерной программы (MATLAB), которая позволяла посчитать трехмерные координаты объектов в поле зрения камер. В итоге рассчитывали вектор полета, минимальное расстояние между мышью и бабочкой и вектор от мыши к бабочке в каждый момент каждого взаимодействия. Угол φ определяли как угловое отклонение между вектором полета мыши и вектором между мышью и бабочкой (рис. 1).

Бабочки B. trigona , как и остальные медведицы, издают щелчки так называемыми тимбальными органами (см. Tymbal). Эти органы хорошо исследованы у певчих цикад, но у бабочек они имеют несколько иное строение. На тимбальных склеритах у медведиц имеются бороздки, которые позволяют им генерировать щелчки с высокой частотой. Серии щелчков генерируются как при активном изгибании тимбального склерита внутрь (active cycle), так и при пассивном возвращении склерита (passive cycle, рис. 2). Средний интервал между щелчками B. trigona , равный 325 мкс, оказывается меньше, чем разрешающая способность уха летучей мыши (400 мкс), поэтому вся серия щелчков воспринимается мышью как непрерывный звук. На рис. 2 также видно, что частотный спектр сигнала бабочки удивительным образом имитирует спектр сигнала летучей мыши.

В поведенческих экспериментах авторы наблюдали три типа поведения летучих мышей. Во-первых, прямую атаку, когда мышь подлетала и пыталась схватить бабочку (рис. 3А); во-вторых, атаку близкого действия, когда мышь не пыталась схватить бабочку, но продолжала атаку после того, как бабочка начинала щелкать (рис. 3В); в-третьих, избегание, когда мышь прекращала атаку вскоре после начала щелканья бабочки и также не пыталась ее схватить (рис. 3С). Три типа поведения различались по величине угла φ (рис. 3D–F). В случае прямой атаки значения φ не превышали доверительного интервала контрольных атак. При атаке близкого действия значения φ уменьшались или были постоянны после начала щелканья бабочки, но под конец следовал сильный скачок, превышающий доверительный интервал. При избегании значения φ начинали расти сразу после того, как бабочка начинала щелкать.

Эхолокационные сигналы мыши также различались во всех трех случаях (рис. 3G–I). В случае прямой атаки сигнал заканчивался типичной трелью, которая всегда присутствовала в атаках на контрольную бабочку (рис. 3G, 4А). Интервал между щелчками мыши был в среднем 6 мс. В атаке близкого действия доминировали обычные щелчки, следующие с интервалом 10–40 мс, которые обычно издаются мышами в поисковом поведении. Если трель и производилась, то очень короткая (рис. 3H, 4В). При избегании мышь начинала издавать редкие щелчки вскоре после того, как бабочка начинала щелкать, и вообще не издавала трели (рис. 4С).

Опыт летучей мыши в экспериментах имел большое значение. Поведение избегания преобладало в течение двух первых ночей (рис. 5), тогда как с 3-й по 7-ю ночь доминировали атаки близкого действия. Это говорит о том, что вначале мыши пугались щелкающих бабочек, но потом привыкали. Тем не менее, только 30% атак заканчивались успешно, и атаки были успешны лишь в тех случаях, когда бабочки мало щелкали. Это подтверждает сделанное авторами предположение, что щелчки бабочки эффективны для глушения сигналов мышей только в том случае, если они генерируются с высокой частотой. В атаках близкого действия мышь промахивалась в среднем на 16 см.

Эти результаты, по мнению авторов, соответствуют предсказаниям гипотезы дистанционной помехи. Низкий процент избеганий в течение 3–7 ночей говорит о том, что мыши не пытаются уклоняться от иллюзорных помех. Приближение мыши к бабочке на относительно короткое расстояние и попытки атак показывают, что бабочка не полностью маскируется, а следовательно, гипотезу маскировки также можно отклонить.

Известно, что, когда летучая мышь приближается к своей жертве, интервалы между щелчками, длительность и интенсивность сигнала уменьшаются. Эти изменения в сигнализации мыши чрезвычайно адаптивны. Высокая частота щелчков позволяет мыши быстро обновлять свою «локационную информацию», тогда как малая длительность сигнала предотвращает перекрывание сигнала и эха, которое начинает приходить быстрее по мере приближения к жертве. В экспериментах с B. trigona авторы наблюдали обратную ситуацию: длительность сигналов и интервалы между щелчками E. fuscus увеличивались. Такая реакция мыши должна еще более осложнять нахождение потенциальной жертвы. Авторы сравнивают это поведение с поведением других млекопитающих, которые таким же образом меняет свой сигнал в условиях высокого шума. Показано, что в этом случае улучшается распознавание сигналов.

Считается, что исходно медведицы генерировали редкие щелчки для рассеивания химических веществ с целью предупреждения о своей несъедобности. Очевидно, что эволюция акустической сигнализации у бабочек шла по пути совершенствования звуковых органов, в частности развития бороздок на тимбальной мембране и поочередной активации тимбалов, что позволило им генерировать щелчки с высокой частотой. В результате некоторые виды (а авторы верят, что B. trigona - не единственный вид бабочки, способный глушить сигналы летучих мышей) выработали такой замечательный способ защиты от достаточно изощренного хищника.

Летучие мыши - маленькие пушистые зверьки, мастерски шныряющие в небе, с наступлением сумерек.
Почти все виды летучих мышей ведут ночной образ жизни, отдыхая днём, повиснув головой вниз, либо забившись в какую то нору.

Летучие мыши относятся к отряду рукокрылых, и составляют основную его часть. Стоит отметить, что рукокрылые обитают на всех континентах нашей планеты, кроме Антарктиды.

Рассмотреть мышку в полёте не реально, их машущий полет сильно отличается от полёта птиц и насекомых, превосходя их маневренностью и аэродинамикой.

Средняя скорость летучих мышей в полёте от 20-50 км/ч. Их крылья имеют кисти с длинными пальцами, соединенными тонкой, но прочной кожистой перепонкой. Эта перепонка растягивается в 4 раза, без разрывов и повреждений. Во время полёта мышь выполняет симметричные махи крыльев, сильно прижимая их к себе, гораздо плотнее чем другие летающие животные, таким образом улучшая аэродинамику своего полёта.

Гибкость крыла позволяет Летучей мыши моментально развернуться на 180 градусов, практически не делая разворота. Так же Летучие мыши способны зависать в воздухе как насекомые, делая быстрые взмахи крыльев.

Эхолокация Летучих мышей

Для ориентированияЛетучие мыши пользуются эхолокацией , а не зрением. Во время полёта, они посылают ультразвуковые импульсы, которые отражаясь от различных предметов, в том числе и живых (насекомых, птиц), улавливаются ушными раковинами.

Интенсивность ультразвуковых сигналов, посылаемых мышью очень велика, и у многих видов достигает до 110-120 децибел (проезжающий поезд, отбойный молоток). Однако, человеческое ухо их не слышит.

Эхолокация помогает мыши не только ориентироваться в полёте, маневрируя в густом лесу, но и контролировать высоту полета, охотится, преследовать добычу, искать место для дневного сна.

Летучие мыши часто спят группами, не смотря на маленький размер, они обладают высоким уровнем социализации.

Песни Летучих мышей

Среди млекопитающих (кроме человека), рукокрылые единственные, кто используют очень сложные голосовые последовательности для общения. Это похоже на песни птиц , но гораздо сложнее.

Мыши поют песни во время ухаживания самца за самкой, для защиты своей территории, для опознавания друг друга и обозначения своего статуса, при воспитании детенышей. Песни издаются в ультразвуковом диапазоне, человек может услышать только то, что "спето" на низких частотах.

Зимой часть рукокрылых мигрирует в более тёплые края, а часть зимует, впадая в спячку.

Природоохранный статус Летучей мыши

Все европейские виды летучих мышей охраняются многими международными конвенциями, в том числе Бернской конвенцией (охрана животных Европы) и Боннской конвенцией (охрана мигрирующих животных). Помимо этого все они занесены в Международную красную книгу IUCN. Часть видов, как находящиеся под угрозой исчезновения, а часть - как уязвимые, требующие постоянного мониторинга. Россия подписала все международные соглашения по охране этих животных. Все виды рукокрылых также охраняются и отечественным законодательством. Некоторые из них включены в Красную книгу. Согласно законодательству, не только сами летучие мыши, но и их места обитания, в первую очередь убежища, подлежат охране. Вот почему, ни органы санитарного надзора, ни ветеринарного просто-напросто не имеют права принимать какие-то меры в отношении найденных поселений рукокрылых в городе, также и человек по закону не вправе уничтожать места обитания мышиных колоний и самих мышей.

Интересные факты о Летучих мышах

1. Существует международная ночь летучих мышей. Этот праздник отмечается 21 сентября, с целью привлечения внимания к проблемам выживания этих животных. В России этот природоохранный праздник отмечают с 2003 года.

2. За один час летучая мышь может съесть до 600 комаров, что в пересчете на вес человека будет равняться примерно 20 пиццам.

3. Летучие мыши не страдают ожирением.

4. Летучие мыши поют песни на высоких частотах.

Красивую мифологическую легенду рассказывает Овидий в "Метаморфозах" о молодой нимфе, которая в один прекрасный день влюбилась в молодого и очень красивого юношу Нарцисса. Однако он остался равнодушен к ней и предпочел проводить все время, наклонившись к воде, чтобы любоваться отражением своего красивого образа. В конце концов он решил обнять собственное изображение, упал в реку и утонул. Отчаявшись, нимфа сошла с ума. Ее голос, блуждая повсюду, отвечает всем крикам в лесах и горах.

Овидий, узник Томиса, не думал, что между "эхом" нежной нимфы и ночным родом летучих мышей будет установлена тайная связь.

Первый шаг сделал итальянский ученый Ладзаро Спалланцани, который летом 1783 года сотни раз посещал колокольню кафедрального собора в Падуе, чтобы проделать чрезвычайно интересные опыты с летучими мышами, которые гроздьями висели на запыленном выступе свода храма. Сначала он протянул множество тонких нитей между потолком и полом, затем снял несколько летучих мышей, залепил им воском глаза и отпустил. На другой день поймал летучих мышей с залепленными глазами и с удивлением заметил, что их желудок полон комаров. Следовательно, этим животным не нужны глаза для ловли насекомых. Спалланцани сделал вывод, что летучие мыши имеют неизвестное седьмое чувство, с помощью которого они ориентируются в полете.

Зная об опытах Спалланцани, швейцарский естествоиспытатель Шарль Жюрин решил замазать уши летучих мышей воском. Он получил неожиданный результат: летучие мыши были не способны различать окружающие предметы, бились о стены. Чем можно объяснить такое поведение летучих мышей? Разве маленькие животные видят ушами?

Известный французский анатом и палеонтолог Жорж Кювье, высокоавторитетный ученый своего времени в области биологии, отрицал исследования Спалланцани и Жюрина и выдвинул довольно смелую гипотезу. Летучие мыши, говорил Кювье, обладают тончайшим чувством осязания, находящимся на очень тонкой кожице крыльев, чувствительных к малейшему давлению воздуха, которое образуется между крыльями и препятствием.

Такая гипотеза более 150 лет бытовала в мировой науке.

В 1912 году изобретатель автоматического пулемета Максим совершенно случайно выдвинул гипотезу о том, что летучие мыши ориентируются с помощью эха, получаемого от шума собственных крыльев; он предложил построить на этом принципе аппарат для предупреждения судов о приближении айсбергов.

Голландец С. Дийкграаф в 1940 году и советский ученый А. Кузякин в 1946 году ясно показали, что органы осязания не играют никакой роли в ориентировании летучих, мышей. Таким образом, была развеяна гипотеза, которая просуществовала 150 лет. Американские ученые Д. Гриффин и Р. Галамбос сумели дать подлинное объяснение ориентированию летучих мышей. При помощи прибора для обнаружения ультразвуков они установили, что летучие мыши издают множество звуков, не воспринимаемых ухом человека. Они сумели обнаружить и изучить физические свойства "крика" летучих мышей. Воткнув в уши летучих мышей специальные электроды, американские ученые установили вместе с тем и частоту звуков, воспринимаемых их слухом. Следовательно, прогресс науки и техники позволить объяснение одной из волнующих тайн природы. Известно, что с физической точки зрения звук - это колебательные движения, распространяющиеся в форме волн в упругой среде. Частота звука (следовательно его высота) зависит от ела колебаний в секунду. Уши человека воспринимают колебания воздуха от 16 до 20000 Гц. Воспринимаемые человеком звуки частотой более 20000 Гц называются ультразвуками, они могут быть очень легко продемонстрированы при помощи введенной в воду кварцевой пластинки под давлением. При этом шум кварцевой пластинки не слышен, а видны результаты ее вибрации в форме вихрей и даже брызг, воды. С помощью кварца можно получить колебания до миллиарда герц.

Ультразвук находит ныне широкое применение. С помощью ультразвука можно обнаружить самые мелкие трещины или пустоты в структуре отлитых из металла деталей. Он применяется вместо скальпеля в бескровных хирургических операциях на мозге и при резке и шлифовке сверхтвердых деталей.

Летучие мыши используют ультразвук для ориентирования. Ультразвук образуется вибрацией голосовых связок. По своей структуре гортань похожа на свисток. Выдыхаемый легкими воздух выходит с большой скоростью и издает свист с частотой 30000-150000 Гц, не улавливаемой ухом человека. Давление воздуха, проходящего через гортань летучей мыши, в два раза больше давления пара у паровоза, что для маленького животного является большим достижением.

В гортани животного возникают 5-200 звуковых колебаний высокой частоты (ультразвуковые импульсы), которые обычно продолжаются всего лишь 2-5 тысячных доли секунды. Краткость сигнала является очень важным физическим фактором: только такой сигнал может обеспечить высокую точность ультразвукового ориентирования. Исходящие от расположенного на расстоянии 17 м препятствия звуки возвращаются до летучей мыши примерно за 0,1 секунды. Если продолжительность звукового сигнала превышает 0,1 секунды, эхо, отражаемое препятствиями, которые расположены на расстоянии менее 17 м, воспринимается ухом животного одновременно с порождающим его звуком. Между тем, по интервалу времени, разделяющему конец сигнала от первых звуков и эхо, летучая мышь определяет расстояние, которое ее отделяет от объекта, отразившего ультразвук. Вот почему звуковой сигнал столь короткий.

Установлено, что летучая мышь, по мере приближения к препятствию, увеличивает количество "сигналов". При нормальном полете гортань животного издает лишь 8-10 сигналов в секунду. Однако, как только животное обнаружит добычу, его полет ускоряется, число издаваемых сигналов достигает 250 в секунду. В этом состоит "изматывание" добычи путем изменения координат нападения. Аппарат "локации" у летучей мыши действует просто; и изобретательно. Животное летает с открытым ртом так, что издаваемые им сигналы излучаются в конусе с углом более 90°. Летучая мышь ориентируется путем сравнения сигналов, принимаемых ее ушами, которые остаются приподнятыми в течение всего времени полета, как приемные антенны. Подтверждением такого предположения является то, что если одно ухо не действует, летучая мышь совсем теряет способность ориентироваться.

Все летучие мыши подотряда Microchiroptera (мелкие летучие мыши), оснащены ультразвуковыми радарами различных моделей, которые могут быть разделены на три категории: мурлыкающие, скандирующие, кричащие или мыши с частотной модуляцией.

"Мурлыкающие" летучие мыши живут в тропических районах Америки и питаются фруктами и насекомыми с листьев. Иногда их мурлыкание при поиске мошек может услышать человек, если они издают звуки на частоте ниже 20000 Гц. И летучая мышь-вампир издает такие же звуки. Мурлыкая "кабалистические формулы", она ищет во влажных лесах Амазонки обессиленных путников, чтобы высосать из них кровь.

Скандирующими летучими мышами, издающими отрывистые звуки, являются rhinolofii, или летучие мыши-подковы, которые встречаются на Кавказе и в Центральной Азии; такое название они получили из-за формы складок вокруг носа. Подкова представляет собой репродуктор, который собирает звуки в направленный пучок. Скандирующие летучие мыши подвешиваются головой вниз и, поворачиваясь почти вкруговую, изучают окружающее пространство с помощью звукового пучка. Этот живой детектор остается висячим до тех пор, пока какое-нибудь насекомое не попадет в поле его звукового сигнала. Тогда летучая мышь делает рывок, чтобы схватить добычу. Во время охоты летучие мыши-подковы издают монотонные очень длительные по сравнению с их ближайшими сородичами (10-20 долей секунды) звуки, частота которых постоянна и всегда одинакова.

Летучие мыши в Европе и в Северной Америке изучают окружающее пространство с помощью звуков модулированной частоты. Тон сигнала и высота отражаемого звука постоянно изменяются. Такое устройство намного облегчает ориентирование по эху.

В полете летучие мыши последних двух групп ведут себя по-особому. Обыкновенные летучие мыши держат уши неподвижно, прямо, а летучие мыши с носом в виде подковы непрерывно производят движения головой, а уши у них вибрируют.

Однако рекордом в области ориентирования обладают летучие мыши, обитающие в районах Америки и питающиеся рыбой. Летучая мышь-рыболов летает почти у поверхности воды, резко пикирует и совершает прыжок в воду, опускает туда лапы с длинными когтями и выхватывает рыбу. Такая охота кажется удивительной, если учесть, что лишь тысячная часть испускаемой волны проникает в воду и также тысячная часть энергии эха от воды возвращается к локатору летучей мыши. Если к этому добавить, что часть энергии волны отражается в рыбе, мясо которой содержит большое количество воды, можно понять, какая ничтожно малая доля энергии достигает уха животного и какую фантастическую точность должен иметь его звуковой орган. Можно также добавить, что такую очень слабую волну нужно еще отличить от звукового фона множества помех.

70 миллионов лет существования летучих мышей на земле научили их использовать физические явления, которые еще неведомы нам. Обнаружение сигнала, возвращенного к своему источнику, значительно ослабленного и потонувшего в шуме помех, является технической проблемой, которая в высшей степени занимает умы ученых. Правда, в распоряжении человека имеется удивительный детектор на радиоволнах, так называемый радар, который за четверть века своего существования сделал чудеса, кульминацией которых явились зондирование Луны и точное измерение орбиты планеты Венера. Что бы делали без радара авиация, морской флот, противовоздушная оборона, географы, метеорологи, гляциологи белых континентов? И все же радиотехники мечтают о радаре на ультразвуках летучей мыши, бесспорно более совершенном, чем тот, который изобрел человек. Маленькое существо умеет отбирать и усиливать ничтожно малую остаточную фракцию сигнала, подаваемого среди океана помех. Сталкиваясь с чрезвычайно большим шумом, называемым сумасшедшим эфиром, инженеры и техники были бы счастливы, если бы могли использовать принципы улавливания сигнала, какими пользуются летучие мыши. Если радар остается блестящим детектором для больших расстояний, то локатор летучих мышей на основе эха остается идеальным средством для малых расстояний.