Линейные неравенства, примеры, решения. Основные виды неравенств и их свойства

Урок и презентация на тему: "Системы неравенств. Примеры решений"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Интерактивное учебное пособие для 9 класса "Правила и упражнения по геометрии"
Электронное учебное пособие "Понятная геометрия" для 7-9 классов

Система неравенств

Ребята, вы изучили линейные и квадратные неравенства, научились решать задачи на эти темы. Теперь давайте перейдем к новому понятию в математике – система неравенств. Система неравенств похожа на систему уравнений. Вы помните системы уравнений? Системы уравнений вы изучали в седьмом классе, постарайтесь вспомнить, как вы их решали.

Введем определение системы неравенств.
Несколько неравенств с некоторой переменой х образуют систему неравенств, если нужно найти все значения х, при которых каждое из неравенств образует верное числовое выражение.

Любое значение x, при которых каждое неравенство принимает верное числовое выражение, является решением неравенства. Также может называться и частным решением.
А что есть частное решение? Например, в ответе мы получили выражение х>7. Тогда х=8, или х=123, или какое-либо другое число большее семи – частное решение, а выражение х>7 – общее решение. Общее решение образуется множеством частных решений.

Как мы объединяли систему уравнений? Правильно, фигурной скобкой, так вот с неравенствами поступают также. Давайте рассмотрим пример системы неравенств: $\begin{cases}x+7>5\\x-3
Если система неравенств состоит из одинаковых выражений, например, $\begin{cases}x+7>5\\x+7
Так, что же значит: найти решение системы неравенств?
Решение неравенства – это множество частных решений неравенства, которые удовлетворяют сразу обоим неравенствам системы.

Общий вид системы неравенств запишем в виде $\begin{cases}f(x)>0\\g(x)>0\end{cases}$

Обозначим $Х_1$ – общее решение неравенства f(x)>0.
$Х_2$ – общее решение неравенства g(x)>0.
$Х_1$ и $Х_2$ - это множество частных решений.
Решением системы неравенств будут числа, принадлежащие, как $Х_1$, так и $Х_2$.
Давайте вспомним операции над множествами. Как нам найти элементы множества, принадлежащие сразу обоим множествам? Правильно, для этого есть операция пересечения. Итак, решением нашего неравенство будет множество $А= Х_1∩ Х_2$.

Примеры решений систем неравенств

Давайте посмотрим примеры решения систем неравенств.

Решите систему неравенств.
а) $\begin{cases}3x-1>2\\5x-10 b) $\begin{cases}2x-4≤6\\-x-4
Решение.
а) Решим каждое неравенство отдельно.
$3х-1>2; \; 3x>3; \; x>1$.
$5x-10
Отметим наши промежутки на одной координатной прямой.

Решением системы будет отрезок пересечения наших промежутков. Неравенство строгое, тогда отрезок будет открытым.
Ответ: (1;3).

Б) Также решим каждое неравенство отдельно.
$2x-4≤6; 2x≤ 10; x ≤ 5$.
$-x-4 -5$.


Решением системы будет отрезок пересечения наших промежутков. Второе неравенство строгое, тогда отрезок будет открытым слева.
Ответ: (-5; 5].

Давайте обобщим полученные знания.
Допустим, необходимо решить систему неравенств: $\begin{cases}f_1 (x)>f_2 (x)\\g_1 (x)>g_2 (x)\end{cases}$.
Тогда, интервал ($x_1; x_2$) – решение первого неравенства.
Интервал ($y_1; y_2$) – решение второго неравенства.
Решение системы неравенств – есть пересечение решений каждого неравенства.

Системы неравенств могут состоять из неравенств не только первого порядка, но и любых других видов неравенств.

Важные правила при решении систем неравенств.
Если одно из неравенств системы не имеет решений, то и вся система не имеет решений.
Если одно из неравенств выполняется для любых значений переменой, то решением системы будет решение другого неравенства.

Примеры.
Решить систему неравенств:$\begin{cases}x^2-16>0\\x^2-8x+12≤0 \end{cases}$
Решение.
Решим каждое неравенство по отдельности.
$x^2-16>0$.
$(x-4)(x+4)>0$.



Решим второе неравенство.
$x^2-8x+12≤0$.
$(x-6)(x-2)≤0$.

Решением неравенства будет промежуток.
Нарисуем оба промежутка на одной прямой и найдем пересечение.
Пересечение промежутков - отрезок (4; 6].
Ответ: (4;6].

Решить систему неравенств.
а) $\begin{cases}3x+3>6\\2x^2+4x+4 б) $\begin{cases}3x+3>6\\2x^2+4x+4>0\end{cases}$.

Решение.
а) Первое неравенство имеет решение х>1.
Найдем дискриминант для второго неравенства.
$D=16-4 * 2 * 4=-16$. $D Вспомним правило, когда одно из неравенств не имеет решений, то вся система не имеет решений.
Ответ: Нет решений.

Б) Первое неравенство имеет решение х>1.
Второе неравенство больше нуля при всех х. Тогда решение системы совпадает с решением первого неравенства.
Ответ: х>1.

Задачи на системы неравенств для самостоятельного решения

Решите системы неравенств:
а) $\begin{cases}4x-5>11\\2x-12 б) $\begin{cases}-3x+1>5\\3x-11 в) $\begin{cases}x^2-25 г) $\begin{cases}x^2-16x+55>0\\x^2-17x+60≥0 \end{cases}$
д) $\begin{cases}x^2+36

После получения начальных сведений о неравенствах с переменными, переходим к вопросу их решения. Разберем решение линейных неравенств с одной переменной и все методы для их разрешения с алгоритмами и примерами. Будут рассмотрены только линейные уравнения с одной переменной.

Yandex.RTB R-A-339285-1

Что такое линейное неравенство?

В начале необходимо определить линейное уравнение и выяснить его стандартный вид и чем оно будет отличаться от других. Из школьного курса имеем, что у неравенств нет принципиального различия, поэтому необходимо использовать несколько определений.

Определение 1

Линейное неравенство с одной переменной x – это неравенство вида a · x + b > 0 , когда вместо > используется любой знак неравенства < , ≤ , ≥ , а и b являются действительными числами, где a ≠ 0 .

Определение 2

Неравенства a · x < c или a · x > c , с x являющимся переменной, а a и c некоторыми числами, называют линейными неравенствами с одной переменной .

Так как ничего не сказано за то, может ли коэффициент быть равным 0 , тогда строгое неравенство вида 0 · x > c и 0 · x < c может быть записано в виде нестрогого, а именно, a · x ≤ c , a · x ≥ c . Такое уравнение считается линейным.

Их различия заключаются в:

  • форме записи a · x + b > 0 в первом, и a · x > c – во втором;
  • допустимости равенства нулю коэффициента a , a ≠ 0 - в первом, и a = 0 - во втором.

Считается, что неравенства a · x + b > 0 и a · x > c равносильные, потому как получены переносом слагаемого из одной части в другую. Решение неравенства 0 · x + 5 > 0 приведет к тому, что его необходимо будет решить, причем случай а = 0 не подойдет.

Определение 3

Считается, что линейными неравенствами в одной переменной x считаются неравенства вида a · x + b < 0 , a · x + b > 0 , a · x + b ≤ 0 и a · x + b ≥ 0 , где a и b являются действительными числами. Вместо x может быть обычное число.

Исходя из правила, имеем, что 4 · x − 1 > 0 , 0 · z + 2 , 3 ≤ 0 , - 2 3 · x - 2 < 0 являются примерами линейных неравенств. А неравенства такого плана, как 5 · x > 7 , − 0 , 5 · y ≤ − 1 , 2 называют сводящимися к линейному.

Как решить линейное неравенство

Основным способом решения таких неравенств сводится к равносильным преобразованиям для того, чтобы найти элементарные неравенства x < p (≤ , > , ≥) , p являющееся некоторым числом, при a ≠ 0 , а вида a < p (≤ , > , ≥) при а = 0 .

Для решения неравенства с одной переменной, можно применять метода интервалов или изображать графически. Любой из них можно применять обособленно.

Используя равносильные преобразования

Чтобы решить линейное неравенство вида a · x + b < 0 (≤ , > , ≥) , необходимо применить равносильные преобразования неравенства. Коэффициент может быть равен или не равен нулю. Рассмотрим оба случая. Для выяснения необходимо придерживаться схемы, состоящей из 3 пунктов: суть процесса, алгоритм, само решение.

Определение 4

Алгоритм решение линейного неравенства a · x + b < 0 (≤ , > , ≥) при a ≠ 0

  • число b будет перенесено в правую часть неравенства с противоположным знаком, что позволит прийти к равносильному a · x < − b (≤ , > , ≥) ;
  • будет производиться деление обеих частей неравенства на число не равное 0 . Причем, когда a является положительным, то знак остается, когда a – отрицательное, меняется на противоположный.

Рассмотрим применение данного алгоритма на решении примеров.

Пример 1

Решить неравенство вида 3 · x + 12 ≤ 0 .

Решение

Данное линейное неравенство имеет a = 3 и b = 12 . Значит, коэффициент a при x не равен нулю. Применим выше сказанные алгоритмы, решим.

Необходимо перенести слагаемое 12 в другую часть неравенства с изменением знака перед ним. Тогда получаем неравенство вида 3 · x ≤ − 12 . Необходимо произвести деление обеих частей на 3 . Знак не поменяется, так как 3 является положительным числом. Получаем, что (3 · x) : 3 ≤ (− 12) : 3 , что даст результат x ≤ − 4 .

Неравенство вида x ≤ − 4 является равносильным. То есть решение для 3 · x + 12 ≤ 0 – это любое действительное число, которое меньше или равно 4 . Ответ записывается в виде неравенства x ≤ − 4 , или числового промежутка вида (− ∞ , − 4 ] .

Весь выше прописанный алгоритм записывается так:

3 · x + 12 ≤ 0 ; 3 · x ≤ − 12 ; x ≤ − 4 .

Ответ: x ≤ − 4 или (− ∞ , − 4 ] .

Пример 2

Указать все имеющиеся решения неравенства − 2 , 7 · z > 0 .

Решение

Из условия видим, что коэффициент a при z равняется - 2 , 7 , а b в явном виде отсутствует или равняется нулю. Первый шаг алгоритма можно не использовать, а сразу переходить ко второму.

Производим деление обеих частей уравнения на число - 2 , 7 . Так как число отрицательное, необходимо поменять знак неравенства на противоположный. То есть получаем, что (− 2 , 7 · z) : (− 2 , 7) < 0: (− 2 , 7) , и дальше z < 0 .

Весь алгоритм запишем в краткой форме:

− 2 , 7 · z > 0 ; z < 0 .

Ответ: z < 0 или (− ∞ , 0) .

Пример 3

Решить неравенство - 5 · x - 15 22 ≤ 0 .

Решение

По условию видим, что необходимо решить неравенство с коэффициентом a при переменной x , которое равняется - 5 , с коэффициентом b , которому соответствует дробь - 15 22 . Решать неравенство необходимо, следуя алгоритму, то есть: перенести - 15 22 в другую часть с противоположным знаком, разделить обе части на - 5 , изменить знак неравенства:

5 · x ≤ 15 22 ; - 5 · x: - 5 ≥ 15 22: - 5 x ≥ - 3 22

При последнем переходе для правой части используется правило деления числе с разными знаками 15 22: - 5 = - 15 22: 5 , после чего выполняем деление обыкновенной дроби на натурально число - 15 22: 5 = - 15 22 · 1 5 = - 15 · 1 22 · 5 = - 3 22 .

Ответ: x ≥ - 3 22 и [ - 3 22 + ∞) .

Рассмотрим случай, когда а = 0 . Линейное выражение вида a · x + b < 0 является неравенством 0 · x + b < 0 , где на рассмотрение берется неравенство вида b < 0 , после чего выясняется, оно верное или нет.

Все основывается на определении решения неравенства. При любом значении x получаем числовое неравенство вида b < 0 , потому что при подстановке любого t вместо переменной x , тогда получаем 0 · t + b < 0 , где b < 0 . В случае, если оно верно, то для его решения подходит любое значение. Когда b < 0 неверно, тогда линейное уравнение не имеет решений, потому как не имеется ни одного значения переменной, которое привело бы верному числовому равенству.

Все суждения рассмотрим в виде алгоритма решения линейных неравенств 0 · x + b < 0 (≤ , > , ≥) :

Определение 5

Числовое неравенство вида b < 0 (≤ , > , ≥) верно, тогда исходное неравенство имеет решение при любом значении, а неверно тогда, когда исходное неравенство не имеет решений.

Пример 4

Решить неравенство 0 · x + 7 > 0 .

Решение

Данное линейное неравенство 0 · x + 7 > 0 может принимать любое значение x . Тогда получим неравенство вида 7 > 0 . Последнее неравенство считается верным, значит любое число может быть его решением.

Ответ : промежуток (− ∞ , + ∞) .

Пример 5

Найти решение неравенства 0 · x − 12 , 7 ≥ 0 .

Решение

При подстановке переменной x любого числа получим, что неравенство получит вид − 12 , 7 ≥ 0 . Оно является неверным. То есть 0 · x − 12 , 7 ≥ 0 не имеет решений.

Ответ: решений нет.

Рассмотрим решение линейных неравенств, где оба коэффициента равняется нулю.

Пример 6

Определить не имеющее решение неравенство из 0 · x + 0 > 0 и 0 · x + 0 ≥ 0 .

Решение

При подстановке любого числа вместо x получим два неравенства вида 0 > 0 и 0 ≥ 0 . Первое является неверным. Значит, 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет бесконечное количество решений, то есть любое число.

Ответ : неравенство 0 · x + 0 > 0 не имеет решений, а 0 · x + 0 ≥ 0 имеет решения.

Данный метод рассматривается в школьном курсе математики. Метод интервалов способен разрешать различные виды неравенств, также и линейные.

Метод интервалов применяется для линейных неравенств при значении коэффициента x не равному 0 . Иначе придется вычислять при помощи другого метода.

Определение 6

Метод интервалов – это:

  • введение функции y = a · x + b ;
  • поиск нулей для разбивания области определения на промежутки;
  • определение знаков для понятия их на промежутках.

Соберем алгоритм для решения линейных уравнений a · x + b < 0 (≤ , > , ≥) при a ≠ 0 с помощью метода интервалов:

  • нахождение нулей функции y = a · x + b , чтобы решить уравнение вида a · x + b = 0 . Если a ≠ 0 , тогда решением будет единственный корень, который примет обозначение х 0 ;
  • построение координатной прямой с изображением точки с координатой х 0 , при строгом неравенстве точка обозначается выколотой, при нестрогом – закрашенной;
  • определение знаков функции y = a · x + b на промежутках, для этого необходимо находить значения функции в точках на промежутке;
  • решение неравенства со знаками > или ≥ на координатной прямой добавляется штриховка над положительным промежутком, < или ≤ над отрицательным промежутком.

Рассмотрим несколько примеров решения линейного неравенства при помощи метода интервалов.

Пример 6

Решить неравенство − 3 · x + 12 > 0 .

Решение

Из алгоритма следует, что для начала нужно найти корень уравнения − 3 · x + 12 = 0 . Получаем, что − 3 · x = − 12 , x = 4 . Необходимо изобразить координатную прямую, где отмечаем точку 4 . Она будет выколотой, так как неравенство является строгим. Рассмотрим чертеж, приведенный ниже.

Нужно определить знаки на промежутках. Чтобы определить его на промежутке (− ∞ , 4) , необходимо произвести вычисление функции y = − 3 · x + 12 при х = 3 . Отсюда получим, что − 3 · 3 + 12 = 3 > 0 . Знак на промежутке является положительным.

Определяем знак из промежутка (4 , + ∞) , тогда подставляем значение х = 5 . Имеем, что − 3 · 5 + 12 = − 3 < 0 . Знак на промежутке является отрицательным. Изобразим на числовой прямой, приведенной ниже.

Мы выполняем решение неравенства со знаком > , причем штриховка выполняется над положительным промежутком. Рассмотрим чертеж, приведенный ниже.

Из чертежа видно, что искомое решение имеет вид (− ∞ , 4) или x < 4 .

Ответ : (− ∞ , 4) или x < 4 .

Чтобы понять, как изображать графически, необходимо рассмотреть на примере 4 линейных неравенства: 0 , 5 · x − 1 < 0 , 0 , 5 · x − 1 ≤ 0 , 0 , 5 · x − 1 > 0 и 0 , 5 · x − 1 ≥ 0 . Их решениями будут значения x < 2 , x ≤ 2 , x > 2 и x ≥ 2 . Для этого изобразим график линейной функции y = 0 , 5 · x − 1 , приведенный ниже.

Видно, что

Определение 7

  • решением неравенства 0 , 5 · x − 1 < 0 считается промежуток, где график функции y = 0 , 5 · x − 1 располагается ниже О х;
  • решением 0 , 5 · x − 1 ≤ 0 считается промежуток, где функция y = 0 , 5 · x − 1 ниже О х или совпадает;
  • решением 0 , 5 · x − 1 > 0 считается промежуток, гре функция располагается выше О х;
  • решением 0 , 5 · x − 1 ≥ 0 считается промежуток, где график выше О х или совпадает.

Смысл графического решения неравенств заключается в нахождении промежутков, которое необходимо изображать на графике. В данном случае получаем, что левая часть имеет y = a · x + b , а правая – y = 0 , причем совпадает с О х.

Определение 8

Построение графика функции y = a · x + b производится:

  • во время решения неравенства a · x + b < 0 определяется промежуток, где график изображен ниже О х;
  • во время решения неравенства a · x + b ≤ 0 определяется промежуток, где график изображается ниже оси О х или совпадает;
  • во время решения неравенства a · x + b > 0 производится определение промежутка, где график изображается выше О х;
  • во время решения неравенства a · x + b ≥ 0 производится определение промежутка, где график находится выше О х или совпадает.

Пример 7

Решить неравенство - 5 · x - 3 > 0 при помощи графика.

Решение

Необходимо построить график линейной функции - 5 · x - 3 > 0 . Данная прямая является убывающей, потому как коэффициент при x является отрицательным. Для определения координат точки его пересечения с О х - 5 · x - 3 > 0 получим значение - 3 5 . Изобразим графически.

Решение неравенства со знаком > , тогда необходимо обратить внимание на промежуток выше О х. Выделим красным цветом необходимую часть плоскости и получим, что

Необходимый промежуток является частью О х красного цвета. Значит, открытый числовой луч - ∞ , - 3 5 будет решением неравенства. Если бы по условию имели нестрогое неравенство, тогда значение точки - 3 5 также являлось бы решением неравенства. И совпадало бы с О х.

Ответ : - ∞ , - 3 5 или x < - 3 5 .

Графический способ решения используется, когда левая часть будет отвечать функции y = 0 · x + b , то есть y = b . Тогда прямая будет параллельна О х или совпадающей при b = 0 . Эти случаю показывают, что неравенство может не иметь решений, либо решением может быть любое число.

Пример 8

Определить из неравенств 0 · x + 7 < = 0 , 0 · x + 0 ≥ 0 то, которое имеет хотя бы одно решение.

Решение

Представление y = 0 · x + 7 является y = 7 , тогда будет задана координатная плоскость с прямой, параллельной О х и находящейся выше О х. Значит, 0 · x + 7 < = 0 решений не имеет, потому как нет промежутков.

График функции y = 0 · x + 0 , считается y = 0 , то есть прямая совпадает с О х. Значит, неравенство 0 · x + 0 ≥ 0 имеет множество решений.

Ответ : второе неравенство имеет решение при любом значении x .

Неравенства, сводящиеся к линейным

Решение неравенств можно свести к решению линейного уравнения, которые называют неравенствами, сводящимися к линейным.

Данные неравенства были рассмотрены в школьном курсе, так как они являлись частным случаем решения неравенств, что приводило к раскрытию скобок и приведению подобных слагаемых. Для примера рассмотрим, что 5 − 2 · x > 0 , 7 · (x − 1) + 3 ≤ 4 · x − 2 + x , x - 3 5 - 2 · x + 1 > 2 7 · x .

Неравенства, приведенные выше, всегда приводятся к виду линейного уравнения. После чего раскрываются скобки и приводятся подобные слагаемые, переносятся из разных частей, меняя знак на противоположный.

При сведении неравенства 5 − 2 · x > 0 к линейному, представляем его таким образом, чтобы оно имело вид − 2 · x + 5 > 0 , а для приведения второго получаем, что 7 · (x − 1) + 3 ≤ 4 · x − 2 + x . Необходимо раскрыть скобки, привести подобные слагаемые, перенести все слагаемые в левую часть и привести подобные слагаемые. Это выглядит таким образом:

7 · x − 7 + 3 ≤ 4 · x − 2 + x 7 · x − 4 ≤ 5 · x − 2 7 · x − 4 − 5 · x + 2 ≤ 0 2 · x − 2 ≤ 0

Это приводит решение к линейному неравенству.

Эти неравенства рассматриваются как линейные, так как имеют такой же принцип решения, после чего возможно приведение их к элементарным неравенствам.

Для решения такого вида неравенства такого вида необходимо свести его к линейному. Это следует делать таким образом:

Определение 9

  • раскрыть скобки;
  • слева собрать переменные, а справа числа;
  • привести подобные слагаемые;
  • разделить обе части на коэффициент при x .

Пример 9

Решить неравенство 5 · (x + 3) + x ≤ 6 · (x − 3) + 1 .

Решение

Производим раскрытие скобок, тогда получим неравенство вида 5 · x + 15 + x ≤ 6 · x − 18 + 1 . После приведения подобных слагаемых имеем, что 6 · x + 15 ≤ 6 · x − 17 . После перенесения слагаемых с левой в правую, получим, что 6 · x + 15 − 6 · x + 17 ≤ 0 . Отсюда имеет неравенство вида 32 ≤ 0 из полученного при вычислении 0 · x + 32 ≤ 0 . Видно, что неравенство неверное, значит, неравенство, данное по условию, не имеет решений.

Ответ : нет решений.

Стоит отметить, что имеется множество неравенств другого вида, которые могут сводится к линейному или неравенству вида, показанного выше. Например, 5 2 · x − 1 ≥ 1 является показательным уравнением, которое сводится к решению линейного вида 2 · x − 1 ≥ 0 . Эти случаи будут рассмотрены при решении неравенств данного вида.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Неравенства и системы неравенств - это одна из тем, которая проходится в средней школе по алгебре. По уровню сложности она является не самой трудной, т. к. имеет незамысловатые правила (о них немного позже). Как правило, решение систем неравенств школьники усваивают достаточно легко. Это связано ещё и с тем, что учителя попросту "натаскивают" своих учеников по данной теме. И они не могут этого не делать, ведь она изучается и в дальнейшем с применением иных математических величин, а также проверяется на ОГЭ и ЕГЭ. В школьных учебниках тема, посвящённая неравенствам и системам неравенств, раскрыта очень подробно, поэтому если вы собираетесь её изучить, то лучше всего прибегнуть именно к ним. Данная статья лишь пересказывает большие материалы, и в ней могут быть некоторые опущения.

Понятие системы неравенств

Если обратиться к научному языку, то можно дать определение понятию "система неравенств". Это такая математическая модель, которая представляет собой несколько неравенств. От данной модели, конечно же, требуется решение, и в его качестве будет выступать общий ответ для всех неравенств системы, предложенной в задании (обычно в нём так и пишут, например: "Решите систему неравенств 4 x + 1 > 2 и 30 - x > 6... "). Однако перед тем как перейти к видам и методам решений, нужно ещё кое в чём разобраться.

Системы неравенств и системы уравнений

В процессе изучения новой темы очень часто возникают недопонимания. С одной стороны, всё ясно и скорее хочется приступить к решению заданий, а с другой - какие-то моменты остаются в "тени", не совсем хорошо осмысливаются. Также некоторые элементы уже полученных знаний могут переплетаться с новыми. В результате такого "наложения" зачастую случаются ошибки.

Поэтому перед тем как приступить к разбору нашей темы, следует вспомнить про отличия уравнений и неравенств, их систем. Для этого нужно ещё раз пояснить, что представляют собой данные математические понятия. Уравнение - это всегда равенство, и оно всегда чему-нибудь равно (в математике это слово обозначается знаком "="). Неравенство же представляет собой такую модель, в которой одна величина или больше, или меньше другой, или содержит в себе утверждение, что они неодинаковы. Таким образом, в первом случае уместно говорить о равенстве, а во втором, как бы это очевидно ни звучало из самого названия, о неравенстве исходных данных. Системы уравнений и неравенств друг от друга практически не отличаются и методы их решения одинаковы. Единственное различие заключается в том, что в первом случае используются равенства, а во втором применяются неравенства.

Виды неравенств

Выделяют два вида неравенств: числовые и с неизвестной переменной. Первый тип представляет собой предоставленные величины (цифры), неравные друг другу, например, 8 > 10. Второй - это неравенства, содержащие в себе неизвестную переменную (обозначается какой-либо буквой латинского алфавита, чаще всего X). Данная переменная требует своего нахождения. В зависимости от того, сколько их, в математической модели различают неравенства с одной (составляют систему неравенств с одной переменной) или несколькими переменными (составляют систему неравенств с несколькими переменными).

Два последних вида по степени своего построения и уровню сложности решения делятся на простые и сложные. Простые называют ещё линейными неравенствами. Они, в свою очередь, подразделяются на строгие и нестрогие. Строгие конкретно "говорят", что одна величина обязательно должна быть либо меньше, либо больше, поэтому это в чистом виде неравенство. Можно привести несколько примеров: 8 x + 9 > 2, 100 - 3 x > 5 и т. д. Нестрогие включают в себя ещё и равенство. То есть одна величина может быть больше или равна другой величине (знак "≥") либо меньше или равна другой величине (знак "≤"). Ещё в линейных неравенствах переменная не стоит в корне, квадрате, не делится на что-либо, из-за чего они называются "простыми". Сложные включают в себя неизвестные переменные, нахождение которых требует выполнения большего количества математических операций. Они часто находятся в квадрате, кубе или под корнем, могут быть модульными, логарифмическими, дробными и пр. Но поскольку нашей задачей становится необходимость разобраться в решении систем неравенств, то мы поговорим о системе линейных неравенств. Однако перед этим следует сказать пару слов об их свойствах.

Свойства неравенств

К свойствам неравенств относятся следующие положения:

  1. Знак неравенства меняется на обратный, если применяется операция по перемене следования сторон (например, если t 1 ≤ t 2 , то t 2 ≥ t 1).
  2. Обе части неравенства позволяют прибавить к себе одно и то же число (например, если t 1 ≤ t 2 , то t 1 + число ≤ t 2 + число).
  3. Два и более неравенств, имеющие знак одного направления, позволяют складывать их левые и правые части (например, если t 1 ≥ t 2 , t 3 ≥ t 4 , то t 1 + t 3 ≥ t 2 + t 4).
  4. Обе части неравенства позволяют себя умножать или делить на одно и то же положительное число (например, если t 1 ≤ t 2 и число ≤ 0, то число · t 1 ≥ число · t 2).
  5. Два и более неравенств, имеющие положительные члены и знак одного направления, позволяют умножать себя друг на друга (например, если t 1 ≤ t 2 , t 3 ≤ t 4 , t 1 , t 2 , t 3 , t 4 ≥ 0 то t 1 · t 3 ≤ t 2 · t 4).
  6. Обе части неравенства позволяют себя умножать или делить на одно и то же отрицательное число, но при этом знак неравенства меняется (например, если t 1 ≤ t 2 и число ≤ 0, то число · t 1 ≥ число · t 2).
  7. Все неравенства обладают свойством транзитивности (например, если t 1 ≤ t 2 и t 2 ≤ t 3 , то t 1 ≤ t 3).

Теперь после изучения основных положений теории, относящейся к неравенствам, можно приступить непосредственно к рассмотрению правил решения их систем.

Решение систем неравенств. Общие сведения. Способы решения

Как уже говорилось выше, решением выступают значения переменной, подходящие ко всем неравенствам данной системы. Решение систем неравенств - это осуществление математических действий, которые в итоге приводят к решению всей системы или доказывают, что у неё решений не имеется. В таком случае говорят, что переменная относится к пустому числовому множеству (записывается так: буква, обозначающая переменную ∈ (знак "принадлежит") ø (знак "пустое множество"), например, x ∈ ø (читается так: "Переменная "икс" принадлежит пустому множеству"). Выделяют несколько способов решения систем неравенств: графический, алгебраический, способ подстановки. Стоит заметить, что они относятся к тем математическим моделям, которые имеют несколько неизвестных переменных. В случае, когда имеется только одна, подойдёт способ интервалов.

Графический способ

Позволяет решить систему неравенств с несколькими неизвестными величинами (от двух и выше). Благодаря данному методу система линейных неравенств решается достаточно легко и быстро, поэтому он является самым распространённым способом. Это объясняется тем, что построение графика сокращает объём написания математических операций. Особенно становится приятным немного отвлечься от ручки, взять в руки карандаш с линейкой и приступить к дальнейшим действиям с их помощью, когда выполнено много работы и хочется небольшого разнообразия. Однако данный метод некоторые недолюбливают из-за того, что приходится отрываться от задания и переключать свою умственную деятельность на рисование. Тем не менее, это очень действенный способ.

Чтобы выполнить решение системы неравенств с помощью графического способа, необходимо все члены каждого неравенства перенести в их левую часть. Знаки поменяются на противоположные, справа следует записать ноль, затем нужно записать каждое неравенство отдельно. В итоге из неравенств получатся функции. После этого можно доставать карандаш и линейку: теперь потребуется нарисовать график каждой полученной функции. Всё множество чисел, которое окажется в интервале их пересечения, будет являться решением системы неравенств.

Алгебраический способ

Позволяет решить систему неравенств с двумя неизвестными переменными. Также неравенства должны обладать одинаковым знаком неравенства (т. е. обязаны содержать либо только знак "больше", либо только знак "меньше" и пр.) Несмотря на свою ограниченность, этот способ к тому же и более сложный. Он применяется в двух этапах.

Первый включает себя действия по избавлению от одной из неизвестных переменных. Сначала нужно её выбрать, затем проверить на наличие чисел перед этой переменной. Если их нет (тогда переменная будет выглядеть, как одиночная буква), то ничего не изменяем, если есть (вид переменной будет, например, таким - 5y или 12y), то тогда необходимо сделать так, чтобы в каждом неравенстве число перед выбранной переменной было одинаковым. Для этого нужно умножить каждый член неравенств на общий множитель, например, если в первом неравенстве записано 3y, а во втором 5y, то необходимо все члены первого неравенства умножить на 5, а второго - на 3. Получится 15y и 15y соответственно.

Второй этап решения. Нужно левую часть каждого неравенства перенести в их правые части с изменением знака каждого члена на противоположный, справа записать нуль. Затем наступает самое интересное: избавление от выбранной переменной (по-другому это называется "сокращение") во время складывания неравенств. Получится неравенство с одной переменной, которое необходимо решить. После этого следует проделать то же самое, только с другой неизвестной переменной. Полученные результаты и будут решением системы.

Способ подстановки

Позволяет решить систему неравенств при наличии возможности ввести новую переменную. Обычно этот способ применяется, когда неизвестная переменная в одном члене неравенства возведена в четвёртую степень, а в другом члене имеет квадрат. Таким образом, данный метод направлен на понижение степени неравенств в системе. Неравенство образца х 4 - х 2 - 1 ≤ 0 данным способом решается так. Вводится новая переменная, например, t. Пишут: "Пусть t = х 2 ", далее модель переписывают в новом виде. В нашем случае получится t 2 - t - 1 ≤0. Это неравенство нужно решить методом интервалов (о нём немного позже), потом обратно вернуться к переменной X, затем проделать то же самое с другим неравенством. Полученные ответы будут решением системы.

Метод интервалов

Это самый простой способ решения систем неравенств, и в то же время он является универсальным и распространённым. Он используется и в средней школе, и даже в высшей. Его суть заключается в том, что ученик ищет промежутки неравенства на числовой прямой, которая рисуется в тетради (это не график, а просто обычная прямая с числами). Там, где промежутки неравенств пересекаются, находится решение системы. Чтобы использовать метод интервалов, необходимо выполнить следующие шаги:

  1. Все члены каждого неравенства переносятся в левую часть с изменением знака на противоположный (справа пишется ноль).
  2. Неравенства выписываются отдельно, определяется решение каждого из них.
  3. Находятся пересечения неравенств на числовой прямой. Все числа, находящиеся на этих пересечениях, будут являться решением.

Какой способ использовать?

Очевидно тот, который кажется наиболее лёгким и удобным, но бывают такие случаи, когда задания требуют определённого метода. Чаще всего в них написано, что нужно решать либо с помощью графика, либо методом интервалов. Алгебраический способ и подстановка используются крайне редко или не используются вообще, поскольку они достаточно сложные и запутанные, да и к тому же больше применяемы для решения систем уравнений, а не неравенств, поэтому следует прибегать к рисованию графиков и интервалов. Они привносят наглядность, которая не может не способствовать эффективному и быстрому проведению математических операций.

Если что-то не получается

Во время изучения той или иной темы по алгебре, естественно, могут возникнуть проблемы с её пониманием. И это нормально, ведь наш мозг устроен так, что он не способен уяснить сложный материал за один раз. Часто требуется перечитать параграф, воспользоваться помощью учителя или заняться практикой по решению типовых заданий. В нашем случае они выглядят, например, так: "Решите систему неравенств 3 x + 1 ≥ 0 и 2 x - 1 > 3". Таким образом, личное стремление, помощь сторонних людей и практика помогают в понимании любой сложной темы.

Решебник?

А ещё очень хорошо подойдёт решебник, только не для списывания домашних заданий, а для самопомощи. В них можно найти системы неравенств с решением, посмотреть на них (как на шаблоны), попытаться понять, как именно автор решения справился с поставленной задачей, а затем попытаться выполнить подобное в самостоятельном порядке.

Выводы

Алгебра - это один из самых сложных предметов в школе. Ну что же тут поделать? Математика всегда была такой: кому-то она даётся легко, а кому-то с затруднением. Но в любом случае следует помнить, что общеобразовательная программа построена так, что с ней может справиться любой ученик. К тому же, надо иметь в виду огромное количество помощников. Некоторые из них были упомянуты выше.

Что нужно знать о значках неравенств? Неравенства со значком больше (> ), или меньше (< ) называются строгими. Со значками больше или равно (), меньше или равно () называются нестрогими. Значок не равно () стоит особняком, но решать примеры с таким значком тоже приходится постоянно. И мы порешаем.)

Сам значок не оказывает особого влияния на процесс решения. А вот в конце решения, при выборе окончательного ответа, смысл значка проявляется в полную силу! Что мы и увидим ниже, на примерах. Есть там свои приколы...

Неравенства, как и равенства, бывают верные и неверные. Здесь всё просто, без фокусов. Скажем, 5 > 2 - верное неравенство. 5 < 2 - неверное.

Такая подготовка работает для неравенств любого вида и проста до ужаса.) Нужно, всего лишь, правильно выполнять два (всего два!) элементарных действия. Эти действия знакомы всем. Но, что характерно, косяки в этих действиях - и есть основная ошибка в решении неравенств, да... Стало быть, надо повторить эти действия. Называются эти действия вот как:

Тождественные преобразования неравенств.

Тождественные преобразования неравенств очень похожи на тождественные преобразования уравнений. Собственно, в этом и есть основная проблема. Отличия проскакивают мимо головы и... приехали.) Поэтому я особо выделю эти отличия. Итак, первое тождественное преобразование неравенств:

1. К обеим частям неравенства можно прибавить (отнять) одно и то же число, или выражение. Любое. Знак неравенства от этого не изменится.

На практике это правило применяется как перенос членов из левой части неравенства в правую (и наоборот) со сменой знака. Со сменой знака члена, а не неравенства! Правило один в один совпадает с правилом для уравнений. А вот следующие тождественные преобразования в неравенствах существенно отличается от таковых в уравнениях. Поэтому я выделяю их красным цветом:

2. Обе части неравенства можно умножить (разделить) на одно и то же положительное число. На любое положительное не изменится.

3. Обе части неравенства можно умножить (разделить) на одно и то же отрицательное число. На любое отрицательное число. Знак неравенства от этого изменится на противоположный.

Вы помните (надеюсь...), что уравнение можно умножать/делить на что попало. И на любое число, и на выражение с иксом. Лишь бы не на ноль. Ему, уравнению, от этого ни жарко, ни холодно.) Не меняется оно. А вот неравенства более чувствительны к умножению/делению.

Наглядный пример на долгую память. Напишем неравенство, не вызывающее сомнений:

5 > 2

Умножим обе части на +3, получим:

15 > 6

Возражения есть? Возражений нет.) А если умножим обе части исходного неравенства на -3, получим:

15 > -6

А это уже откровенная ложь.) Полное враньё! Обман народа! Но стоит изменить знак неравенства на противоположный, как всё становится на свои места:

15 < -6

Про враньё и обман - это я не просто так ругаюсь.) "Забыл сменить знак неравенства..." - это главная ошибка в решении неравенств. Это пустяковое и несложное правило стольких людей ушибло! Которые забыли...) Вот и ругаюсь. Может, запомнится...)

Особо внимательные заметят, что неравенство нельзя умножать на выражение с иксом. Респект внимательным!) А почему нельзя? Ответ простой. Мы же не знаем знак этого выражения с иксом. Оно может быть положительное, отрицательное... Стало быть, мы не знаем, какой знак неравенства ставить после умножения. Менять его, или нет? Неизвестно. Разумеется, это ограничение (запрет умножения/деления неравенства на выражение с иксом) можно обойти. Если очень надо будет. Но это тема для других уроков.

Вот и все тождественные преобразования неравенств. Ещё раз напомню, что они работают для любых неравенств. А теперь можно переходить к конкретным видам.

Линейные неравенства. Решение, примеры.

Линейными неравенствами называются неравенства, в которых икс находится в первой степени и нет деления на икс. Типа:

х+3 > 5х-5

Как решаются такие неравенства? Они решаются очень просто! А именно: с помощью сводим самое замороченное линейное неравенство прямо к ответу. Вот и всё решение. Главные моменты решения я буду выделять. Во избежание дурацких ошибок.)

Решаем это неравенство:

х+3 > 5х-5

Решаем точно так же, как и линейное уравнение. С единственным отличием:

Внимательно следим за знаком неравенства!

Первый шаг самый обычный. С иксами - влево, без иксов - вправо... Это первое тождественное преобразование, простое и безотказное.) Только знаки у переносимых членов не забываем менять.

Знак неравенства сохраняется:

х-5х > -5-3

Приводим подобные.

Знак неравенства сохраняется:

> -8

Осталось применить последнее тождественное преобразование: разделить обе части на -4.

Делим на отрицательное число.

Знак неравенства изменится на противоположный:

х < 2

Это ответ.

Так решаются все линейные неравенства.

Внимание! Точка 2 рисуется белой, т.е. незакрашенной. Пустой внутри. Это означает, что она в ответ не входит! Я её специально такой здоровой нарисовал. Такая точка (пустая, а не здоровая!)) в математике называется выколотой точкой.

Остальные числа на оси отмечать можно, но не нужно. Посторонние числа, не относящиеся к нашему неравенству, могут и запутать, да... Нужно только помнить, что увеличение чисел идёт по стрелке, т.е. числа 3, 4, 5, и т.д. находятся правее двойки, а числа 1, 0, -1 и т.д. - левее.

Неравенство х < 2 - строгое. Икс строго меньше двух. Если возникают сомнения, проверка простая. Подставляем сомнительное число в неравенство и размышляем: "Два меньше двух? Нет, конечно!" Именно так. Неравенство 2 < 2 неверное. Не годится двойка в ответ.

А единичка годится? Конечно. Меньше же... И ноль годится, и -17, и 0,34... Да все числа, которые меньше двух - годятся! И даже 1,9999.... Хоть чуть чуть, да меньше!

Вот и отметим все эти числа на числовой оси. Как? Тут бывают варианты. Вариант первый - штриховка. Наводим мышку на рисунок (или касаемся картинки на планшете) и видим, что заштрихована область всех иксов, подходящих под условие х < 2 . Вот и всё.

Второй вариант рассмотрим на втором примере:

х ≥ -0,5

Рисуем ось, отмечаем число -0,5. Вот так:

Заметили разницу?) Ну да, трудно не заметить... Эта точка - чёрная! Закрашенная. Это означает, что -0,5 входит в ответ. Здесь, кстати, проверка и смутить может кого-нибудь. Подставляем:

-0,5 ≥ -0,5

Как так? -0,5 никак не больше -0,5! А значок больше имеется...

Ничего страшного. В нестрогом неравенстве годится всё, что подходит под значок. И равно годится, и больше годится. Следовательно, -0,5 в ответ включается.

Итак, -0,5 мы отметили на оси, осталось ещё отметить все числа, которые больше -0,5. На этот раз я отмечаю область подходящих значений икса дужкой (от слова дуга ), а не штриховкой. Наводим курсор на рисунок и видим эту дужку.

Особой разницы между штриховкой и дужками нет. Делайте, как учитель сказал. Если учителя нет - рисуйте дужки. В более сложных заданиях штриховка менее наглядна. Запутаться можно.

Вот так рисуются линейные неравенства на оси. Переходим к следующей особенности неравенств.

Запись ответа для неравенств.

В уравнениях было хорошо.) Нашли икс, да и записали ответ, например: х=3. В неравенствах существуют две формы записи ответов. Одна - в виде окончательного неравенства. Хороша для простых случаев. Например:

х < 2.

Это полноценный ответ.

Иногда требуется записать то же самое, но в другой форме, через числовые промежутки. Тогда запись начинает выглядеть очень научно):

х ∈ (-∞; 2)

Под значком скрывается слово "принадлежит".

Читается запись так: икс принадлежит промежутку от минус бесконечности до двух не включая . Вполне логично. Икс может быть любым числом из всех возможных чисел от минус бесконечности до двух. Двойкой икс быть не может, о чём нам и говорит слово "не включая".

А где это в ответе видно, что "не включая" ? Этот факт отмечается в ответе круглой скобкой сразу после двойки. Если бы двойка включалась, скобка была бы квадратной. Вот такой: ]. В следующем примере такая скобка используется.

Запишем ответ: х ≥ -0,5 через промежутки:

х ∈ [-0,5; +∞)

Читается: икс принадлежит промежутку от минус 0,5, включая, до плюс бесконечности.

Бесконечность не может включаться никогда. Это не число, это символ. Поэтому в подобных записях бесконечность всегда соседствует с круглой скобкой.

Такая форма записи удобна для сложных ответов, состоящих из нескольких промежутков. Но - именно для окончательных ответов. В промежуточных результатах, где предполагается дальнейшее решение, лучше использовать обычную форму, в виде простого неравенства. Мы с этим в соответствующих темах разберёмся.

Популярные задания с неравенствами.

Сами по себе линейные неравенства просты. Поэтому, частенько, задания усложняются. Так, чтобы подумать надо было. Это, если с непривычки, не очень приятно.) Но полезно. Покажу примеры таких заданий. Не для того, чтобы вы их выучили, это лишнее. А для того, чтобы не боялись при встрече с подобными примерами. Чуть подумать - и всё просто!)

1. Найдите любые два решения неравенства 3х - 3 < 0

Если не очень понятно, что делать, вспоминаем главное правило математики:

Не знаешь, что нужно - делай, что можно!)

х < 1

И что? Да ничего особенного. Что нас просят? Нас просят найти два конкретных числа, которые являются решением неравенства. Т.е. подходят под ответ. Два любых числа. Собственно, это и смущает.) Подходит парочка 0 и 0,5. Парочка -3 и -8. Да этих парочек бесконечное множество! Какой ответ правильный?!

Отвечаю: все! Любая парочка чисел, каждое из которых меньше единицы, будет правильным ответом. Пишите, какую хотите. Едем дальше.

2. Решить неравенство:

4х - 3 0

Задания в таком виде встречаются редко. Но, как вспомогательные неравенства, при нахождении ОДЗ, например, или при нахождении области определения функции, - встречаются сплошь и рядом. Такое линейное неравенство можно решать как обычное линейное уравнение. Только везде, кроме знака "=" (равно ) ставить знак "" (не равно ). Так к ответу и подойдёте, со знаком неравенства:

х 0,75

В более сложных примерах, лучше поступать по-другому. Сделать из неравенства равенство. Вот так:

4х - 3 = 0

Спокойно решить его, как учили, и получить ответ:

х = 0,75

Главное, в самом конце, при записи окончательного ответа, не забыть, что мы нашли икс, который даёт равенство. А нам нужно - неравенство. Стало быть, этот икс нам как раз и не нужен.) И надо записать его с правильным значком:

х 0,75

При таком подходе получается меньше ошибок. У тех, кто уравнения на автомате решает. А тем, кто уравнения не решает, неравенства, собственно, ни к чему...) Ещё пример популярного задания:

3. Найти наименьшее целое решение неравенства:

3(х - 1) < 5х + 9

Сначала просто решаем неравенство. Ракрываем скобки, переносим, приводим подобные... Получаем:

х > - 6

Не так получилось!? А за знаками следили!? И за знаками членов, и за знаком неравенства...

Опять соображаем. Нам нужно найти конкретное число, подходящее и под ответ, и под условие "наименьшее целое". Если сразу не осеняет, можно просто взять любое число и прикинуть. Два больше минус шести? Конечно! А есть подходящее число поменьше? Разумеется. Например, ноль больше -6. А ещё меньше? Нам же самое маленькое из возможных надо! Минус три больше минус шести! Уже можно уловить закономерность и перестать тупо перебирать числа, правда?)

Берём число поближе к -6. Например, -5. Ответ выполняется, -5 > - 6. Можно найти ещё число, меньше -5, но больше -6? Можно, например -5,5... Стоп! Нам сказано целое решение! Не катит -5,5! А минус шесть? Э-э-э! Неравенство строгое, минус 6 никак не меньше минус 6!

Стало быть, правильный ответ: -5.

Надеюсь, с выбором значения из общего решения всё понятно. Ещё пример:

4. Решить неравенство:

7 < 3х+1 < 13

Во как! Такое выражение называется тройным неравенством. Строго говоря, это сокращённая запись системы неравенств. Но решать такие тройные неравенства всё равно приходится в некоторых заданиях... Оно решается безо всяких систем. По тем же тождественным преобразованиям.

Надо упростить, довести это неравенство до чистого икса. Но... Что куда переносить!? Вот тут самое время вспомнить, что перенос влево-вправо, это сокращённая форма первого тождественного преобразования.

А полная форма звучит вот как: К обеим частям уравнения (неравенства) можно прибавить/отнять любое число, или выражение.

Здесь три части. Вот и будем применять тождественные преобразования ко всем трём частям!

Итак, избавимся от единички в средней части неравенства. Отнимем от всей средней части единичку. Чтобы неравенство не изменилось, отнимем единичку и от оставшихся двух частей. Вот так:

7 -1< 3х+1-1< 13-1

6 < < 12

Уже лучше, правда?) Осталось разделить все три части на тройку:

2 < х < 4

Вот и всё. Это ответ. Икс может любым числом от двойки (не включая) до четвёрки (не включая). Этот ответ тоже записывается через промежутки, такие записи будут в квадратных неравенствах. Там они - самое обычное дело.

В конце урока повторю самое главное. Успех в решении линейных неравенств зависит от умения преобразовывать и упрощать линейные уравнения. Если при этом следить за знаком неравенства, проблем не будет. Чего я вам и желаю. Отсутствия проблем.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Представлены основные виды неравенств, включая неравенства Бернулли, Коши - Буняковского, Минковского, Чебышева. Рассмотрены свойства неравенств и действия над ними. Даны основные методы решения неравенств.

Формулы основных неравенств

Формулы универсальных неравенств

Универсальные неравенства выполняются при любых значениях входящих в них величин. Ниже перечислены основные виды универсальных неравенств.

1) | a ± b | ≤ |a| + |b| ; | a 1 ± a 2 ± ... ± a n | ≤ |a 1 | + |a 2 | + ... + |a n |

2) |a| + |b| ≥ | a - b | ≥ | |a| - |b| |

3)
Равенство имеет место только при a 1 = a 2 = ... = a n .

4) Неравенство Коши - Буняковского

Равенство имеет место тогда и только тогда, когда α a k = β b k для всех k = 1, 2, ..., n и некоторых α, β, |α| + |β| > 0 .

5) Неравенство Минковского , при p ≥ 1

Формулы выполнимых неравенств

Выполнимые неравенства выполняются при определенных значениях входящих в них величин.

1) Неравенство Бернулли:
.
В более общем виде:
,
где , числа одного знака и больше, чем -1 : .
Лемма Бернулли:
.
См. «Доказательства неравенств и леммы Бернулли ».

2)
при a i ≥ 0 (i = 1, 2, ..., n) .

3) Неравенство Чебышева
при 0 < a 1 ≤ a 2 ≤ ... ≤ a n и 0 < b 1 ≤ b 2 ≤ ... ≤ b n
.
При 0 < a 1 ≤ a 2 ≤ ... ≤ a n и b 1 ≥ b 2 ≥ ... ≥ b n > 0
.

4) Обобщенные неравенства Чебышева
при 0 < a 1 ≤ a 2 ≤ ... ≤ a n и 0 < b 1 ≤ b 2 ≤ ... ≤ b n и k натуральном
.
При 0 < a 1 ≤ a 2 ≤ ... ≤ a n и b 1 ≥ b 2 ≥ ... ≥ b n > 0
.

Свойства неравенств

Свойства неравенств - это набор тех правил, которые выполняются при их преобразовании. Ниже представлены свойства неравенств. Подразумевается, что исходные неравенства выполняются при значениях x i (i = 1, 2, 3, 4) , принадлежащих некоторому, заранее определенному, интервалу.

1) При изменении порядка следования сторон, знак неравенства меняется на противоположный.
Если x 1 < x 2 , то x 2 > x 1 .
Если x 1 ≤ x 2 , то x 2 ≥ x 1 .
Если x 1 ≥ x 2 , то x 2 ≤ x 1 .
Если x 1 > x 2 , то x 2 < x 1 .

2) Одно равенство эквивалентно двум нестрогим неравенствам разного знака.
Если x 1 = x 2 , то x 1 ≤ x 2 и x 1 ≥ x 2 .
Если x 1 ≤ x 2 и x 1 ≥ x 2 , то x 1 = x 2 .

3) Свойство транзитивности
Если x 1 < x 2 и x 2 < x 3 , то x 1 < x 3 .
Если x 1 < x 2 и x 2 ≤ x 3 , то x 1 < x 3 .
Если x 1 ≤ x 2 и x 2 < x 3 , то x 1 < x 3 .
Если x 1 ≤ x 2 и x 2 ≤ x 3 , то x 1 ≤ x 3 .

4) К обеим частям неравенства можно прибавить (вычесть) одно и то же число.
Если x 1 < x 2 , то x 1 + A < x 2 + A .
Если x 1 ≤ x 2 , то x 1 + A ≤ x 2 + A .
Если x 1 ≥ x 2 , то x 1 + A ≥ x 2 + A .
Если x 1 > x 2 , то x 1 + A > x 2 + A .

5) Если есть два или более неравенств со знаком одного направления, то их левые и правые части можно сложить.
Если x 1 < x 2 , x 3 < x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 < x 2 , x 3 ≤ x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 ≤ x 2 , x 3 < x 4 , то x 1 + x 3 < x 2 + x 4 .
Если x 1 ≤ x 2 , x 3 ≤ x 4 , то x 1 + x 3 ≤ x 2 + x 4 .
Аналогичные выражения имеют место для знаков ≥, >.
Если в исходных неравенствах имеются знаки не строгих неравенств и хотя бы одно строгое неравенство (но все знаки имеют одинаковое направление), то при сложении получается строгое неравенство.

6) Обе части неравенства можно умножить (разделить) на положительное число.
Если x 1 < x 2 и A > 0 , то A · x 1 < A · x 2 .
Если x 1 ≤ x 2 и A > 0 , то A · x 1 ≤ A · x 2 .
Если x 1 ≥ x 2 и A > 0 , то A · x 1 ≥ A · x 2 .
Если x 1 > x 2 и A > 0 , то A · x 1 > A · x 2 .

7) Обе части неравенства можно умножить (разделить) на отрицательное число. При этом знак неравенства изменится на противоположный.
Если x 1 < x 2 и A < 0 , то A · x 1 > A · x 2 .
Если x 1 ≤ x 2 и A < 0 , то A · x 1 ≥ A · x 2 .
Если x 1 ≥ x 2 и A < 0 , то A · x 1 ≤ A · x 2 .
Если x 1 > x 2 и A < 0 , то A · x 1 < A · x 2 .

8) Если есть два или более неравенств с положительными членами, со знаком одного направления, то их левые и правые части можно умножить друг на друга.
Если x 1 < x 2 , x 3 < x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 < x 2 , x 3 ≤ x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 ≤ x 2 , x 3 < x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 < x 2 · x 4 .
Если x 1 ≤ x 2 , x 3 ≤ x 4 , x 1 , x 2 , x 3 , x 4 > 0 то x 1 · x 3 ≤ x 2 · x 4 .
Аналогичные выражения имеют место для знаков ≥, >.
Если в исходных неравенствах имеются знаки не строгих неравенств и хотя бы одно строгое неравенство (но все знаки имеют одинаковое направление), то при умножении получается строгое неравенство.

9) Пусть f(x) - монотонно возрастающая функция. То есть при любых x 1 > x 2 , f(x 1) > f(x 2) . Тогда к обеим частям неравенства можно применить эту функцию, от чего знак неравенства не изменится.
Если x 1 < x 2 , то f(x 1) < f(x 2) .
Если x 1 ≤ x 2 , то f(x 1) ≤ f(x 2) .
Если x 1 ≥ x 2 , то f(x 1) ≥ f(x 2) .
Если x 1 > x 2 , то f(x 1) > f(x 2) .

10) Пусть f(x) - монотонно убывающая функция, То есть при любых x 1 > x 2 , f(x 1) < f(x 2) . Тогда к обеим частям неравенства можно применить эту функцию, от чего знак неравенства изменится на противоположный.
Если x 1 < x 2 , то f(x 1) > f(x 2) .
Если x 1 ≤ x 2 , то f(x 1) ≥ f(x 2) .
Если x 1 ≥ x 2 , то f(x 1) ≤ f(x 2) .
Если x 1 > x 2 , то f(x 1) < f(x 2) .

Методы решения неравенств

Решение неравенств методом интервалов

Метод интервалов применим, если в неравенство входит одна переменная, которую обозначим как x , и оно имеет вид:
f(x) > 0
где f(x) - непрерывная функция, имеющая конечное число точек разрывов. Знак неравенства может быть любым: >, ≥, <, ≤ .

Метод интервалов заключается в следующем.

1) Находим область определения функции f(x) и отмечаем ее интервалами на числовой оси.

2) Находим точки разрыва функции f(x) . Например, если это дробь, то находим точки, в которых знаменатель обращается в нуль. Отмечаем эти точки на числовой оси.

3) Решаем уравнение
f(x) = 0 .
Корни этого уравнения отмечаем на числовой оси.

4) В результате числовая ось окажется разбитой точками на интервалы (отрезки). Внутри каждого интервала, входящего в область определения, выбираем любую точку и в этой точке вычисляем значение функции. Если это значение больше нуля, то над отрезком (интервалом) ставим знак „+“ . Если это значение меньше нуля, то над отрезком (интервалом) ставим знак „-“ .

5) Если неравенство имеет вид: f(x) > 0 , то выбираем интервалы с знаком „+“ . Решением неравенства будет объединение этих интервалов, в которые не входят их границы.
Если неравенство имеет вид: f(x) ≥ 0 , то к решению добавляем точки, в которых f(x) = 0 . То есть часть интервалов, возможно, будут иметь закрытые границы (граница принадлежит интервалу). другая часть может иметь открытые границы (граница не принадлежит интервалу).
Аналогично, если неравенство имеет вид: f(x) < 0 , то выбираем интервалы с знаком „-“ . Решением неравенства будет объединение этих интервалов, в которые не входят их границы.
Если неравенство имеет вид: f(x) ≤ 0 , то к решению добавляем точки, в которых f(x) = 0 .

Решение неравенств, применяя их свойства

Этот метод применим для неравенств любой сложности. Он состоит в том, чтобы, применяя свойства (представленные выше), привести неравенства к более простому виду и получить решение. Вполне возможно, что при этом получится не одно, а система неравенств. Это универсальный метод. Он применим для любых неравенств.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.