Инсоляция. Общие сведения для расчета солнечного коллектора

Климатические особенности Земли определяются в основном величиной поступающей солнечной радиации на ее поверхность, особенностями атмосферной циркуляции. Количество солнечной радиации, поступающей на Землю, зависит от географической широты.

Солнечная радиация

Солнечная радиация - вся совокупность солнечного излучения, поступающего на поверхность Земли. Кроме видимого солнечного света, она включает невидимые ультрафиолетовое и инфракрасное излучения. В атмосфере солнечная радиация частично поглощается, частично рассеивается облаками. Различают прямую и рассеянную солнечную радиацию. Прямая солнечная радиация - солнечная радиация, доходящая до земной поверхности в виде параллельных лучей, исходящих непосредственно от Солнца. Рассеянная солнечная радиация - часть прямой солнечной радиации, рассеянной молекулами газов, поступающая на земную поверхность от всего небесного свода. В пасмурные дни рассеянная радиация является единственным источником энергии в приземных слоях атмосферы. Суммарная солнечная радиация включает прямую и рассеянную солнечную радиацию и достигает поверхности Земли.

Солнечная радиация - это важнейший источник энергии атмосферных процессов - формирования погоды и климата, источник жизни на Земле. Под влиянием солнечной радиации нагревается земная поверхность, а от нее - атмосфера, испаряется влага, происходит круговорот воды в природе.

Земная поверхность, поглощая солнечную радиацию (поглощенная радиация), нагревается и сама излучает тепло в атмосферу. Поглощенная земной поверхностью радиация расходуется на нагрев почвы, воздуха, воды. Нижние слои атмосферы в значительной мере задерживают земное излучение. Основную часть поступающей на земную поверхность радиации поглощает пашня (до 90 %), хвойный лес (до 80 %). Часть солнечной радиации отражается от поверхности (отраженная радиация). Наибольшей отражательной способностью обладают свежевыпавший снег, поверхность водоемов, песчаная пустыня.

Распределение солнечной радиации на Земле зонально. Она убывает от экватора к полюсам в соответствии с уменьшением угла падения солнечных лучей на земную поверхность. На поступление солнечной радиации на поверхность Земли влияют также облачность, прозрачность атмосферы.

Материки по сравнению с океанами получают больше солнечной радиации благодаря меньшей (на 15-30 %) облачности над ними. В Северном полушарии, где основная часть Земли занята материками, суммарная радиация выше, нежели в Южном океаническом полушарии. В Антарктиде, где чистый воздух и высокая прозрачность атмосферы, поступает большое количество прямой солнечной радиации. Однако из-за высокой отражательной способности поверхности Антарктиды температура воздуха отрицательная.

Тепловые пояса

В зависимости от количества солнечной радиации, поступающей на поверхность Земли, на земном шаре выделяют 7 тепловых поясов: жаркий, два умеренных, два холодных и два пояса вечного мороза. Границами тепловых поясов являются изотермы. Жаркий пояс с севера и юга ограничен средними годовыми изотермами +20 °С (рис. 9). Два умеренных пояса к северу и югу от жаркого пояса ограничены со стороны экватора средней годовой изотермой +20 °С, а со стороны высоких широт - изотермой +10 °С (средней температурой воздуха самых теплых месяцев - июля в Северном и января в Южном полушариях). Северная граница совпадает примерно с границей распространения лесов. Два холодных пояса к северу и югу от умеренного пояса в Северном и Южном полушариях лежат между изотермами +10 °С и 0 °С самого теплого месяца. Два пояса вечного мороза ограничены изотермой 0 °С самого теплого месяца от холодных поясов. Царство вечных снегов и льдов простирается к Северному и Южному полюсам.

Распределение температуры воздуха на Земле

Так же как и солнечная радиация, температура воздуха на Земле изменяется зонально от экватора к полюсам. Эту закономерность наглядно отражают карты распределения изотерм самого теплого (июля - в Северном полушарии, января - в Южном) и самого холодного (января - в Северном полушарии, июля - в Южном) месяцев в году. Самой «теплой» параллелью является 10° с. ш. - термический экватор, где средняя температура воздуха +28 °С. Летом он смещается к 20° с. ш., зимой приближается к 5° с. ш. Большая часть суши находится в Северном полушарии, соответственно термический экватор сдвигается к северу.

Температура воздуха на всех параллелях Северного полушария выше, чем на аналогичных параллелях Южного полушария. Средняя годовая температура в Северном полушарии составляет +15,2 °С, а в Южном полушарии - +13,2 °С. Это связано с тем, что в Южном полушарии океан занимает большую площадь, и, следовательно, больше тепла тратится на испарение с его поверхности. Кроме того, охлаждающее влияние на Южное полушарие оказывает материк Антарктида, покрытый вечными льдами.

Средняя годовая температура в Арктике на 10-14 °С выше, чем в Антарктиде. Это в значительной степени определяется тем, что Антарктида покрыта обширным ледниковым панцирем, а большая часть Арктики представлена Северным Ледовитым океаном, куда проникают теплые течения из более низких широт. Например, отепляющее влияние на Северный Ледовитый океан оказывает Норвежское течение.

По обе стороны экватора располагаются экваториальные и тропические широты, где средняя температура зимой и летом очень высокая. Над океанами изотермы распределяются равномерно, почти совпадают с параллелями. У побережий материков они сильно искривляются. Это объясняется неодинаковым нагреванием суши и океана. Кроме того, на температуру воздуха у побережий оказывают влияние теплые и холодные течения, преобладающие ветры. Особенно это заметно в Северном полушарии, где расположена большая часть суши. (Проследите распределение температур по тепловым поясам с помощью атласа.)

В Южном полушарии распределение температур более равномерно. Однако здесь есть свои горячие области - пустыня Калахари и Центральная Австралия, где температура января поднимается выше +45 °С, а июля падает до –5 °С. Полюсом холода является Антарктида, где был зафиксирован абсолютный минимум –91,2 °С.

Годовой ход температуры воздуха обусловлен ходом солнечной радиации и зависит от географической широты. В умеренных широтах максимум температур воздуха наблюдается в июле в Северном полушарии, в январе - в Южном, а минимум - в январе в Северном полушарии, в июле - в Южном. Над океаном максимумы и минимумы запаздывают на месяц. Годовая амплитуда температур воздуха возрастает с широтой местности. Наибольших значений она достигает на континентах, значительно меньших - над океанами, на морских побережьях. Самая маленькая годовая амплитуда температур воздуха (2 °С) наблюдается в экваториальных широтах. Самая большая (более 60 °С) - в субарктических широтах на материках.

Количество солнечной радиации, поступающей на Землю, зависит от угла падения солнечных лучей, облачности и прозрачности атмосферы. Так же как и солнечная радиация, температура воздуха на Земле распределяется зонально и понижается от экватора к полюсам.

20.11.2015

Инсоляция.

Инсоляцией (на латыни in solo – выставляю на солнце) называется облучение поверхности параллельных пучком лучей, которые берут свое начало с направления источника света. В нашем случае источником света всегда является Солнце. Инсоляция значительно отличается в разных точках поверхности Земли. В южных районах России инсоляция значительно выше чем в средней полосе или на севере страны. Для сравнения приведем суммарные годовые значения инсоляции для различных регионов земного шара: Европа 1000-1800кВт×ч/м2; Центральная Африка примерно 2300 кВт×ч/м2, Ближний Восток - 2000кВт*ч/м*2, Средняя Азия 1800кВт*ч/м*2, Москва 1000кВт*ч/м*2, Сочи 1300кВт*ч/м*2, Архангельск -850кВт*ч/м*2. Сезонные колебания значений месячной инсоляции увеличиваются, чем ближе к одному из полюсов Земли. Например в Москве разница между инсоляцией летом и зимой может отличаться более чем в 7-8 раз, а в Краснодаре лишь в 3-4 раза(хотя и это много). Подобные сезонные колебания инсоляции были бы мало ощутимы, будь ось Земли перпендикулярна орбите вращения Земли вокруг Солнца. И тогда такие колебания инсоляции зависели бы лишь от расстояния до Солнца. Но реально земная ось составляет угол в 23° с плоскостью орбиты Земли, и это вносит существенные сезонные колебания в инсоляцию конкретной области Земли.

Изображенные на рисунке выше потоки энергии солнечного света А, Б и В идентичны, но по причине кривизны земной поверхности и атмосферы, энергия потоков А и В после прохождения атмосферы уменьшается сильнее, чем энергия потока Б. На рисунке показано положение Земли для 21 июня, дня когда лучи Солнца на 23-й параллели попадают на поверхность перпендикулярно. Это день с максимальной долготой дня. Широта местности учитывается ориентацией «солнечных модулей» при монтаже солнечной установки.

Кроме того инсоляция зависит еще от нескольких важных факторов:

  • времени года, например зимнее время характеризуется малой освещенностью и коротким световым днем;
  • времени суток, т.к. освещенность в течении дня меняется, кроме того солнечные лучи, попадающие на поверхность солнечного модуля под очень острым углом практически не воспринимаются солнечным модулем;
  • рельефа местности, включая предметы загораживающие солнце: здания, деревья, горы и прочее);
  • конкретных погодных условий в режиме реального времени(снег, туман, облака).

Солнечная радиация на верхней границе атмосферы (Вт × ч/м 2 в сутки)

Широта, ºс.ш. 0 10 20 30 40 50 60 70 80 90
21 июня 370 410 440 460 475 471 465 481 502 512
21 декабря 401 344 288 214 152 85 24 0 0 0
Среднегодовое значение 404 399 384 354 318 275 222 195 176 168

Согласно таблице инсоляция летом и зимой отличается весьма значительно. Если сравнивать значения инсоляции на разных широтах 21 июня, то можно заметить, что инсоляция колеблется в пределах 370-512Вт*ч/м*2, т.е. не очень сильно. А вот 21 декабря ситуация совершенно иная-значения инсоляции колеблется от 0 до 401Вт*ч/м*2. Т.е. зимой, чем выше широта, тем значительней разница с летним значением инсоляции. В декабре между северными и южными широты имеет максимальное отличие. Вследствие этого инсоляция сильно различается в зависимости от времени года и географического положения. Об этом не стоит забывать при использовании ВИЭ на основе солнечных коллекторов. Годовые колебания инсоляции на экваторе совсем незначительны, но весьма сильно нарастают при перемещении к северу. Даже для южных регионов нашей страны, таких как Краснодарский край, из-за низкой облачности в зимний период солнечная радиация в 3-4 раза меньше, чем летом. Для Москвы же эта разница достигает 8-10 раз. Эти годовые колебания на территории России невелики для Восточной Сибири, Дальнего Востока, а также районов высокогорья. Здесь, кроме более менее равномерного распределения инсоляции в течении года, сказывается тот факт, что при одной и той же освещенности эффективность холодной солнечной батареи несколько выше, чем нагретой жарким летним солнцем. По этой причине при монтаже солнечных модулей на кровле следует обеспечить воздушный зазор для свободной циркуляции воздуха под солнечными модулями для охлаждения рабочей поверхности модуля. Небольшой компенсации влияния сезонности на работу солнечной станции добиваются летним и зимним положением солнечных модулей относительно горизонта - для летнего периода угол наклона на 15° меньше географической широты, а для зимнего периода на 15° больше. Это связано с высотой стояния светила.

При круглогодичном использовании солнечного коллектора с целью получения максимума энергии в целом за год без сезонной регулировки наклона угол должен быть равен географической широте местности. Фактор времени суток можно учитывать проводя слежение за солнцем. Слежение по азимуту даст прибавку в 20% к снимаемой с солнечной батареии энергии, а дополнительное слежение за светилом по высоте еще 10%. Устройства, обеспечивающие подобное слежение называются трекерами. "Слежение" осуществляется при помощи поворотной платформы на которой закреплены солнечные модули. Платформа непрерывно или дискретно "следит" за Солнцем. Но прежде всего необходимо сопоставить количество дополнительно полученной энергии со стоимостью трекера, его монтажа и обслуживания. В обычной практике ограничиваются стационарной установкой солнечных батарей.
В статье - опубликованы среднестатистические нормы инсоляции на территории основных территорий РФ и бывшего СССР с градацией по месяцам и ориентации плоскости светоприемника в пространстве. Необходимо учитывать,что в таблице 2 значения солнечной радиации выражены в МДж/м2 и для горизонтальной поверхности. Перевод МДж/м2 в кВт/м2 производится делением на 3.6 значения в МДж/м2.

ЗАКАЗАТЬ РАСЧЁТ

Если выбор гелиосистемы вызывает у Вас затруднение, оставьте заявку на расчёт и квалифицированные специалисты нашей компании помогут подобрать солнечную водонагревательную установку удовлетворяющую Вашим потребностям.

Южная Америка расположена по обе стороны от экватора, но основная ее часть лежит в южном полушарии. Самая ши­рокая часть материка находится между экватором и южным тропиком, в субтропических и умеренных широтах лежит его суженная и расчлененная оконечность.

Географическое положение между 12° с. ш. и 56° ю. ш. обус­ловливает высокие суммы солнечной радиации почти на всей территории Южной Америки. Большая часть ее получает 120- 160 ккал/см 2 (5000-6700 МДж/м 2) в год, и лишь на крайнем юге эта величина снижается до 80 ккал/см 2 (3300 МДж/м 2). Радиационный баланс земной поверхности имеет отрицатель­ное значение в зимнее время года только к югу от 45° ю. ш., т. е. на очень небольшой части материка.

Важным фактором климатообразования в Южной Америке, как и в Северной, является ее орография. Воздушные потоки, идущие со стороны Атлантического океана, свободно прони­кают на запад вплоть до подножия Анд. На западе и отчасти на севере барьер Анд оказывает влияние на движение воздуш­ных течений, идущих с Тихого океана и Карибского моря. Велико значение также течений Атлантического и Тихого океанов у берегов материка. Гвианская и Бразильская ветви Южного Пассатного течения в Атлантическом океане создают у берегов Южной Америки зимнюю положительную аномалию порядка 3°С. Перуанское же холодное течение в Тихом океане, проникающее почти до самого экватора, выносит на север массы холодных вод из Антарктики и снижает температуру в экваториальной зоне на 4°С по сравнению со средней для этих широт.

Важнейший тип циркуляции атмосферы для большей части Южной Америки - пассатная циркуляция обоих полушарий. По западной периферии атлантических максимумов выносятся массы относительно влажного тропического воздуха, который испытывает трансформацию, продвигаясь в глубь материка и отдавая значительную часть своей влаги окраинным подня­тиям Бразильского и Гвианского нагорий.

На восточной окраине материка, к югу от экватора, встре­чаются пассаты северного и южного полушарий, а в более за­падных районах в летнее время каждого полушария наблю­дается переход пассатных потоков в другое полушарие и обра­зование муссонных ветров.

Западная окраина материка на значительном протяжении подвержена воздействию восточной периферии Южно-Тихо­океанского максимума и связанных с ней южных и юго-запад­ных ветров и пассатной инверсии.

Крайний юг материка испытывает воздействие западного переноса умеренных широт.

В январе наиболее прогрета та часть Южной Америки, ко­торая лежит к югу от экватора, и над ней формируется об­ласть пониженного давления. Североатлантический максимум несколько смещен к югу, и оттекающий по его южной пери­ферии воздушный поток в виде северо-восточного пассата захватывает северную часть Южной Америки. Он оставляет значительное количество осадков на восточных склонах Гвиан­ского нагорья и на Гвианской низменности, а во внутренних районах нагорья и на низменности Ориноко представляет собой сухой ветер, с которым связан период засухи. Пересекая эк­ватор, воздух этого потока трансформируется в экваториаль­ный, меняет направление на северное и северо-западное и орошает дождями большую часть Бразильского нагорья и равнины Гран-Чако.

Со стороны Южно-Атлантического максимума в сторону нагретого материка дуют ветры муссонного характера, при­носящие дожди на юго-восточную окраину Бразильского на­горья и Ла-Платскую низменность.

Большая часть западного побережья, начиная от 30° ю. ш. и почти до экватора, находится под влиянием восточной пери­ферии Южно-Тихоокеанского максимума и не получает осад­ков. Только отрезок побережья к северу от залива Гуаякиль находится под воздействием экваториальных воздушных масс и орошается обильными дождями.

На крайний юг материка с запада приходит влажный океа­нический воздух. При этом побережье Тихого океана и особенно западные склоны Анд получают обильные осадки, а Патагон-ское плато, находящееся под прикрытием Анд и омываемое с востока холодным течением, становится центром формиро­вания относительно сухих континентальных воздушных масс умеренных широт.

В июле вся северная часть материка оказывается под воз­действием влажного экваториального воздуха, приносимого юго-западным муссонном, и не менее влажного морского тропического воздуха, поступающего со стороны Атлантиче­ского океана.

Над Бразильским нагорьем устанавливается высокое давле­ние и сухая погода в связи с перемещением на север тропиче­ского максимума южного полушария. Только юго-восточная окраина нагорья попадает под воздействие юго-восточного пас­сата, приходящего непосредственно с Атлантического океана, и получает значительное, хотя и меньшее, чем летом, коли­чество осадков.

В субтропических и умеренных широтах южного полушария господствует западный перенос и выпадают циклональные дожди. Патагония по-прежнему остается центром формирования от­носительно сухого и холодного воздуха, который временами прорывается на север и проникает вплоть до Амазонской низменности, вызывая там значительные понижения темпе­ратуры.

Над центральной частью Тихоокеанского побережья в июле, как и в январе, от 30° ю. ш. до экватора преобладают южные и юго-западные ветры, дующие параллельно берегу над водами холодного Перуанского течения, что приводит к большой су­хости на Тихоокеанском побережье в этих широтах. Только на северном его отрезке, где пассат переходит в юго-западный мус­сон, выпадает значительное количество осадков.

Южная Америка расположена основной своей частью в пре­делах экваториального, обоих субэкваториальных и южного тропического климатических поясов. На крайнем юге она захо­дит в субтропический и умеренный пояса.

Пояс экваториального климата в Южной Америке включает почти всю Амазонскую низменность, кроме восточной части и крайнего юга, прилегающие части Гвианского нагорья и низменности Ориноко. В пределы экваториального пояса входит также Тихоокеанское побережье к северу от экватора. Для этого пояса характерны обильные осадки и равномерная высокая температура (+ 24, +28°С) в течение всего года. Годовые суммы осадков колеблются от 1500 до 2500 мм, и только на скло­нах Анд и на Тихоокеанском побережье количество осадков возрастает до 5000-7000 мм в год. Осадки в этот район в течение всего года приносят южные и юго-западные ветры, и большие суммы их объясняются орографическими причи­нами. В Амазонской низменности основная часть осадков выпадает за счет конвективных процессов в экваториальных воздушных массах. Обильные осадки намного превышают ис­паряемость, обусловливая в течение всего года высокий коэф­фициент увлажнения (везде значительно больше 100%).

Вся северная часть Южной Америки, включая Оринокскую низменность, побережье Карибского моря, значительную часть Гвианского нагорья и Гвианскую низменность, лежит в субэква­ториальном поясе северного полушария. В субэкваториальный пояс южного полушария входят север Бразильского нагорья и южная часть Амазонской низменности, а также часть тихо­океанского побережья от экватора до 4-5° ю. ш. На востоке субэкваториальные пояса северного и южного полушарий соединяются. Отличительная черта субэкваториального кли­мата - сезонность в распределении осадков - выражена на всей этой территории достаточно четко. В южном полуша­рии - на Бразильском нагорье, на юге Амазонской низмен­ности и в нижнем течении Амазонки - период дождей, связан­ных с действием экваториального муссона, длится примерно с декабря по май, причем продолжительность его возрастает к эк­ватору. На севере дождливый период продолжается с мая по декабрь. Зимой во время действия пассатов осадки не выпа­дают. Только на северном отрезке прибрежной части Бразиль­ского нагорья, где пассаты, приходя с теплого океана, встре­чают на своем пути горы, дожди бывают и в зимнее время.

Наиболее высока температура в переходный период между концом сухого и началом влажного сезона, когда средняя ме­сячная температура поднимается до +28, +30 6 С. При этом никогда средняя температура не бывает ниже +20°С.

В пределы тропического климатического пояса Южная Аме­рика входит только в южном полушарии. Восток и юго-восток Бразильского нагорья находятся в области влажного пассат­ного климата, где осадки в течение всего года приносят потоки тропического воздуха со стороны Атлантики. Поднимаясь по склонам гор, воздух оставляет на наветренной стороне большое количество влаги. По режиму осадков и увлажнению этот климат близок к климату Амазонской низменности, но харак­теризуется более значительными температурными различиями между наиболее жарким и наиболее прохладным месяцами.

Внутри материка в тропическом поясе (равнина Гран-Чако) климат засушливый, с летним максимумом осадков и резко вы­раженным сухим зимним периодом. По режиму осадков он близок к субэкваториальному, но отличается от него резкими скачками температуры, особенно в зимнее время, меньшими годовыми суммами осадков и недостаточным увлажнением. Побережье Тихого океана между 5 и 30° ю. ш. лежит в об­ласти климата береговых пустынь и полупустынь. Наиболее ярко этот климат выражен в пустыне Атакама, которая на­ходится под воздействием восточной периферии Тихоокеан­ского максимума и инверсий температуры, создаваемых постоянным притоком относительно холодного воздуха из вы­соких широт и холодных вод мощного Перуанского течения. При относительной влажности воздуха до 80% осадков выпа­дает очень мало - местами всего несколько миллиметров в год. Некоторой компенсацией почти полного отсутствия дож­дей служат обильные росы, выпадающие на побережье в зим­нее время. Температура даже наиболее жарких месяцев редко превышает +20°С, и сезонные амплитуды невелики.

К югу от 30° ю. ш. Южная Америка входит в пределы субтропического климатического пояса.

Юго-восток материка (южная окраина Бразильского на­горья, бассейн нижнего Уругвая, междуречье Параны и Уруг­вая, восточная часть Пампы) имеет равномерный влажный субтропический климат. Летом влагу приносят северо-восточ­ные ветры муссонного характера, зимой осадки выпадают в связи с циклонической деятельностью по полярному фронту. Лето в этих районах очень жаркое, зима мягкая, со средними месячными температурами около +10°С, но бывают падения температуры значительно ниже 0°С в связи с вторжениями относительно холодных воздушных масс с юга.

Для внутриматериковых районов субтропического пояса (Западная Пампа) характерен засушливый субтропический климат. Влаги с Атлантического океана туда попадает немного, и осадки (не более 500 мм в год), выпадающие летом, имеют главным образом конвективное происхождение. В течение всего года наблюдаются резкие колебания температуры и частые понижения их зимой ниже 0°С при средних Месячных темпе­ратурах + 10°С.

На Тихоокеанском побережье (от 30 до 37° ю. ш) климат субтропический, с сухим летом. Под влиянием восточной пери­ферии Тихоокеанского максимума лето там почти бездождное и нежаркое (особенно на самом побережье). Зима мягкая и дождливая. Сезонные амплитуды температуры незначительны.

В умеренном поясе (к югу от 40° ю. ш.) лежит самая узкая часть Южной Америки. В Патагонии находится центр форми­рования континентального воздуха умеренных широт. Осадки в эти широты приносят западные ветры, путь которым в Пата­гонию преграждают Анды, поэтому и количество их не превышает 250-300 мм. Зимой бывают сильные холода в связи с проникновением холодного воздуха с юга. Морозы в исключительных случаях достигают -30, -35°С, однако средние месячные температуры положительны.

На крайнем юго-западе материка и на прибрежных островах климат умеренно теплый, океанический. Вся эта область нахо­дится под воздействием интенсивной циклонической деятель­ности и притока океанического воздуха умеренных широт. На западных склонах Анд особенно много осадков выпадает в зимнее время. Летом дождей бывает меньше, но преобладает пасмурная облачная погода. Годовые суммы осадков везде пре­вышают 2000 мм. Различия в температурах летних и зимних месяцев невелики.

На территории земного шара есть места, где показатели радиационных загрязнений буквально зашкаливают, поэтому находиться там человеку крайне опасно.

Радиация является губительной для всего живого на земле, но при этом человечество не перестает пользоваться атомными электростанциями, разрабатывать бомбы и так далее. В мире уже есть несколько ярких примеров того, к чему может привести неосторожное использование этой огромной силы. Давайте посмотрим на места с самым большим уровнем радиоактивного фона.

1. Рамсар, Иран

В городе на севере Ирана зафиксирован самый высокий уровень естественного радиационного фона на Земле. Эксперименты определили показатели в 25 мЗв. в год при норме 1-10 миллизивертов.

2. Селлафилд, Великобритания


Это не город, а атомный комплекс, используемый для производства оружейного плутония для атомных бомб. Он был основан в 1940 году, а через 17 лет случился пожар, который спровоцировал выброс плутония. Эта ужасная трагедия унесла жизни многих людей, которые умирали впоследствии еще долгое время от рака.

3. Черч-Рок, Нью-Мексико


В этом городе находится урановая обогатительная фабрика, на которой произошла серьезная авария, в результате которой больше 1 тыс. тон твердых радиоактивных отходов и 352 тыс. м3 раствора кислотного радиоактивного отвала попало в реку Пуэрко. Все это привело к тому, что уровень радиации сильно вырос: показатели в 7 тыс. раз превышают норму.

4. Побережье Сомали


Радиация в этом месте появилась совсем неожиданно, а ответственность за ужасные последствия лежит на Европейских компаниях, расположенных на территории Швейцарии и Италии. Их руководство воспользовалось нестабильной ситуацией в республике и нагло сбросило радиоактивные отходы на берега Сомали. В результате пострадали ни в чем неповинные люди.

5. Лос-Барриос, Испания


На заводе по переработке металлолома Ачеринокс из-за ошибки контрольно-измерительных устройств был расплавлен источник цезия-137, что привело к выбросу радиоактивного облака с уровнем радиации, который превысил нормальные показатели в 1 тыс. раз. Через время загрязнение распространилось на территории Германии, Франции, Италии и других стран.

6. Денвер, Америка


Исследования показали, что в сравнении с другими регионами Денвер сам по себе имеет высокий уровень радиации. Есть предположение: все дело в том, что город находится на высоте в одну милю над уровнем моря, а в таких регионах атмосферный фон является более тонким, а значит, и защита от радиации солнечных лучей не такая сильная. К тому же, в Денвере находятся крупные месторождения урана.

7. Гуарапари, Бразилия


Красивые пляжи Бразилии могут быть опасными для здоровья, это касается мест отдыха в Гуарапари, где происходит эрозия естественного радиоактивного элемента монацита в песке. Если сравнивать с положенной нормой в 10 мЗв, показатели при измерении песка оказались намного выше – 175 мЗв.

8. Аркарула, Австралия


Уже не одну сотню лет распространителями радиации являются подземные источники Параланы, которые протекают через богатые ураном породы. Исследования показали, что эти горячие источники выносят на поверхность земли радон и уран. Когда ситуация изменится, непонятно.

9. Вашингтон, Америка


Хэнфордский комплекс является ядерным и основан он был в 1943 году правительством Америки. Его главная задача заключалась в выработке ядерной энергии для изготовления оружия. На данный момент его вывели из эксплуатации, но радиация продолжает исходить из него, и сохранится это еще на долгое время.

10. Карунагаппалли, Индия


В индийском штате Керала в округе Коллам есть муниципалитет карунагаппалли, где проводят добычу редких металлов, причем некоторые из них, например, монацит, в результате эрозии стал похожим на песок. Из-за этого в некоторых местах на пляжах уровень радиации доходит до 70 мЗв/год.

11. Гояс, Бразилия


В 1987 году произошел плачевный инцидент в штате Гояс, расположенном в центрально-западном регионе Бразилии. Сборщики металлолома решили забрать из местной заброшенной больницы аппарат, предназначенный для лучевой терапии. Из-за него в опасности оказался весь регион, поскольку незащищенный контакт с аппаратом привел к распространению радиации.

12. Скарборо, Канада


Еще с 1940 года жилищный квартал в Скарборо является радиоактивным, а называют этот участок Макклур. Спровоцировал загрязнение радий, извлеченный из металла, который планировали использовать для проведения экспериментов.

13. Нью-Джерси, Америка


В округе Берлингтон расположена база военно-воздушных сил Макгвайр, которая была включена Агентством по охране окружающей среды в перечень самых загрязненных авиабаз в Америке. В этом месте были проведены операции по очистке территории, но повышенные уровня радиации здесь фиксируются до сих пор.

14. Берег реки Иртыш, Казахстан


Во времена холодной войны еще на территории СССР был создан Семипалатинский испытательный полигон, где проводили тестирования ядерного оружия. Здесь было проведено 468 испытаний, последствия которых отразились на жителях окрестностей. Данные показывают, что пострадало примерно 200 тыс. человек.

15. Париж, Франция


Даже в одной из самых известных и красивых европейский столиц есть место, зараженное радиацией. Большие значения радиоактивного фона были обнаружены в форте Д"Обервильер. Все дело в том, что там находится 61 бак с цезием и радием, да и сама территория в 60 м3 загрязнена.

16. Фукусима, Япония


В марте 2011 года на атомной станции, расположенной в Японии, произошла ужасная ядерная катастрофа. В результате аварии территория, расположенная вокруг этой станции, стала похожей на пустыню, поскольку примерно 165 тыс. местных жителей покинули свои дома. Место признали зоной отчуждения.

17. Сибирь, Россия


В этом месте находится один из самых крупных химических комбинатов в мире. Он вырабатывает до 125 тыс. тонн твердых отходов, которые загрязняют грунтовые воды в ближайших территориях. Кроме этого, эксперименты показали, что осадки распространяют радиацию и на дикую природу, от чего страдают животные.

18. Янцзян, Китай


В округе Янцзян для постройки домов использовали кирпичи и глину, но, видимо, никто не подумал или не знал, что этот строительный материал не подходит для сооружения домов. Связано это с тем, что песок в регион поставляется из частей холмов, где содержится большое количество монацита – минерала, который распадается на радий, актиний и радон. Получается, что люди постоянно подвергаются воздействию радиации, поэтому показатель заболеваний раком очень высок.

19. Майлуу-Суу, Киргизия


Это одно из самых загрязненных мест в мире, и все дело не в ядерной энергетике, а в развернутой горнодобывающей и перерабатывающей уран деятельности, в результате которой выбрасывается около 1,96 млн. м3 радиоактивных отходов.

20. Сими Вэлли, Калифорния


В небольшом городе штата Калифорния находится полевая лаборатория НАСА, которая носит название Санта Сусанна. За годы ее существования было много неполадок, связанных с десятью ядерными реакторами малой мощности, что привело к выделению радиоактивных металлов. Сейчас в этом месте проводятся операции, направленные на очистку территории.

21. Озерск, Россия


В Челябинской области находится производственное объединение «Маяк», которое было построено еще в 1948 году. Предприятие занимается производством компонентов ядерного оружия, изотопов, хранением и регенерацией отработанного ядерного топлива. Здесь было несколько аварий, что привело к загрязнению питьевой воды, а это увеличило количество хронических заболеваний у местных жителей.

22. Чернобыль, Украина


Катастрофа, которая произошла в 1986 году, коснулась не только жителей Украины, но и других стран. Статистика показала, что существенно возросли случаи возникновения хронических и онкологических заболеваний. Что удивительно, официально было признано, что от аварии погибло только 56 человек.

    Климатообразующие факторы.

а. географическое положение, конфигурация, расчленение.

б. океанические течения

в. рельеф

    Циркуляция воздушных масс в июле и январе.

    Распределение температур, осадков.

    Климатообразующие факторы.

а. Географическое положение, конфигурация, расчленение материка.

Большая часть Южной Америки находится в экваториальном, тропическом и субтропическом поясах. Южный тропик пересекает материк там, где начинается его сужение. Материк лежит в основном в южном полушарии.

Положение наиболее обширной части материка в экваториальных и тропических широтах обусловливает получение значительной суммы солнечной радиации - 140-160 ккал/см в год. Лишь южнее 40 ю.ш. суммарная радиация понижается до 80-120 ккал. Тем же фактором объясняются в основном и высокие показатели радиационного баланса, достигающие почти 60-85 ккал. Даже в Патагонии радиационный баланс составляет около 40 ккал, т.е. она находится в тех же условиях, что и юг европейской части России.

В экваториальных широтах вследствие большого нагрева материка в течение всего года происходит постоянное поднятие воздушных масс и формирование области пониженного давления, куда устремляются пассатные воздушные массы с Атлантики. Отсюда и преобладание мощного восточно­-западного переноса в экваториальных широтах. В субтропических и умеренных широтах площадь материка уменьшается, и в связи с этим даже в зимнее время материковые антициклоны почти не образуются. Но над обоими океанами субтропические максимумы выражены всегда очень четко и служат областями оттока пассатных воздушных масс. Восток материка в тропическом и субтропическом поясе подвержен воздействию западной периферии атлантических максимумов. На западе сильно влияние восточной периферии тихоокеанского антициклона с преобладанием воздушных потоков южного направления. В циркуляции умеренных широт, где размеры суши малы, выражен западно-восточный перенос воздушных масс с активной циклонической деятельностью на полярном фронте.

б. Океанические течения.

Теплое Бразильское течение утепляет и увеличивает влагосодержание пассатных воздушных масс, орошающих восточную часть Бразильского нагорья. Холодное Фолклендские течение усиливает засушливость лежащей на берегу океана Патагонии, а холодное Перуанское течение в значительной степени способствует образованию громадного пустынного пояса на западе материка.в. Важным фактором в формировании климата является рельеф.

Орографические особенности Южной Америки способствуют меридиональному переносу воздушных масс над материком. Анды, как и Гималаи, являются важнейшим климаторазделом. Высокий барьер Анд, протягивающийся вдоль всей западной окраины материка, ограничивает влияние Тихого океана. Напротив, воздействию воздушных масс, приходящих с Атлантики, предоставлен почти весь материк. Континентальные массы воздуха образуются лишь в южное лето в области Гран-Чако (континентальный тропический воздух) и слабо намечается зимой на равнинах Патагонии (континентальный воздух умеренных широт).

    Циркуляция воздушных масс.

Июль. В июле все барические системы смещены к северу. Северо-восточный пассат, приходящий к берегам материка с юго-восточной периферии Азорского максимума состоит из теплых влажных морских масс воздуха. Этими ветрами и циклоническими дождями на тропическом фронте обусловливается летний дождливый период на севере Колумбии и Венесуэлы и в Гвианах. В Льянос распространяется экваториальный влажный воздух из Амазонии. Последний формируется в Амазонии за счет атлантических пассатных воздушных масс. Интенсивная внутриматериковая конвекция обусловливает ежедневные послеполуденные ливни, связанные с охлаждением воздушных масс в высоких слоях атмосферы. В Восточной Амазонии действие юго-восточного пассата с Бразильского нагорья проявляется в уменьшении количества осадков в это время года.

В южном полушарии юго-восточный пассат с северной периферии южноатлантической области высокого давления подходит к северо-восточному выступу Бразилии. Но, далее, в результате простирания береговой линии на северо-запад, лишь скользит вдоль берега, не оказывая существенного влияния на климат.

Ветры западной периферии южно-атлантического антициклона, движущиеся против часовой стрелки с северо-востока на юго-запад, состоят из масс теплого тропического воздуха и захватывают не только побережье восточной Бразилии, но, обходя центральную часть нагорья с относительно высоким зимним давлением, проникают на юго-запад внутрь материка до восточных предгорий Анд, где соприкасаются с воздушными массами умеренных широт, образуя полярный фронт.

Все западное побережье, склоны Анд и межгорные плато от 30 ю.ш. до экватора зимой находятся под воздействием восточной периферии тихоокеанского максимума. Южные и юго-восточные ветры состоят из масс тропического морского воздуха. Эти относительно холодные и тяжелые массы оказываются насыщенными только в нижних слоях. В том же направлении в этих широтах вдоль западного побережья Южной Америки проходит холодное Перуанское течение. Эти явления приводят к уменьшению относительной влажности воздуха. Весь запад между 30 ю.ш. оказывается резко засушливым и ненормально охлажденным. Но, к северу от экватора, где юго-восточный пассат, изменяя направление, превращается в юго-западный муссон, теплые, насыщенные влагой тихоокеанские экваториальные массы подходя под углом к Андам, обильно орошают западную Колумбию, получающую осадки и с конвективными дождями этих широт.

В умеренных широтах зимний континентальный антициклон в Патагонии выражен слабо вследствие резкого сужения материка в умеренных широтах. Воздушные массы умеренных широт приходят на материк и с Тихого океана, где существует постоянный западный перенос. Этот морской тихоокеанский воздух приносит зимой в южное Чили огромное количество осадков. Среднее субтропическое Чили также попадает в сферу умеренной циркуляции в связи со смещением тихоокеанского антициклона к северу. Западные и юго-западные ветры орошают территорию вплоть до 30 ю.ш. Дожди эти имеют фронтальный характер при взаимодействии умеренных и тропических воздушных масс.

ТАКИМ ОБРАЗОМ, в июле наибольшее количество влаги получают северная окраина материка, восточное побережье Бразилии, Западная Амазония, южное и среднее Чили и западная Колумбия.

В январе все барические центры занимают свое крайне южное положение. Азорский антициклон максимально приближен к экватору, вызывает внедрение северо-атлантических морских масс воздуха в виде северо-восточного пассата, который проникает в область пониженного давления над Амазонской низменностью и низменностью Парагвая до восточных склонов Анд, где трансформируется над сушей в континентальный тропический воздух, также теплый и влажный. Восходящие токи воздуха, насыщенные влагой дают ежедневные дожди. Соответственно стоянию солнца в зените максимумы осадков наблюдаются дважды - весной и осенью.

Влажный экваториальный воздух с северо-востока захватывает также северную, северо-западную и западную части Бразильского нагорья, включая впадину верней Параны и область Гран-Чако, достигая Ла-Платы, обуславливает здесь летний дождливый сезон. Северная окраина материка испытывает в это время года зимнюю засуху, так как влажные экваториальные воздушные массы перемещаются на юг. Южноатлантический антициклон (его западная периферия) орошает юго-восточное побережье Бразилии (в июле северо-восточную) и северо-восточную Аргентину и имеет муссонный характер.

В умеренных широтах западный перенос Тихоокеанских воздушных масс совершается в более высоких широтах, чем зимой и в несколько ослабленном виде, хотя южное Чили получает и летом большое количество осадков. Но равнины Патагонии в течение всего года остаются в «сухой тени». Влияние восточной периферии тихоокеанского антициклона с холодными южными ветрами на западе материка сказывается уже и в субтропическом среднем Чили, где летом устанавливается сухая погода. Вся центральная часть западного побережья характеризуется отсутствием осадков - поэтому здесь находится Пустыня Атакама. Севернее залива Гуаякиль западный Эквадор получает летние дожди вследствие проникновения сюда с севера экваториальных масс.

Они же, вместе с юго-западным экваториальным муссоном и в январе орошают западную Колумбию.

ТАКИМ ОБРАЗОМ, выпадение обильных осадков в январе наблюдается в Амазонской низменности, но восток орошается больше, чем в июле. Обильное увлажнение на востоке испытывает весь субэкваториальный пояс южного полушария до 20 0 ю.ш., в то время как север материка засушлив. Летне-осенние фронтальные дожди характерны для юго-восточной Бразилии и северо-восточной Аргентины, южное Чили, как и западная Колумбия по-прежнему остаются «мокрыми углами» материка, но среднее Чили испытывает засушливый период и, наоборот, побережье Эквадора влажное. Между 28-5 0 ю.ш. на западе и летом и зимой осадков практически нет.

    Распределение температур.

В июле вся Амазонская низменность и западная часть Бразильского нагорья сильно нагреты, находятся в основном под влиянием экваториальных воздушных масс и лежат внутри изотермы + 25 0 . На территории субтропических и умеренных широт глубокое проникновение морских воздушных масс умеренных широт сказывается на быстром падении температур, и изотермы, следуя с востока на запад сменяются от + 18 0 у Асунсьона до +2 0 на юге Огненной Земли. Но на высоких плато Патагонии устанавливаются отрицательные температуры до -5 0 . Вторжения с юга воздушных масс умеренных широт вызывают нерегулярные заморозки на всей центральной и восточной части Бразильского нагорья, в Чако и северной Аргентине. В южной Пампе заморозки могут быть в течение 2-3 месяцев, в северо-восточной Патагонии - в течение 5-6 месяцев, в центральной - до 9 мес, а в юго-западной части возможны даже летом, зимой температура иногда падает до -30.

Холодные воздушное и морское течения с юга на север вдоль западного побережья Южной Америки вызывают резкое отклонение изотерм к северу и сжимание их в тесный пучок в западном Перу. Так, например, июльская изотерма +20 0 от широты Копьяпо (27 0 ю.ш.) поднимается по побережью почти до Гуаякиля (5 0 ю.ш.).

В Андах температура с высотой снижается, и на высокогорных плато не только зимой, но и летом случаются заморозки. На высоте 2000 м под 40 0 ю.ш в Андах наблюдался абсолютный минимум – 40 0 .

В январ е вся северная половина материка на востоке до Анд и 20 0 ю.ш. лежит внутри изотермы +25 0 . В области Гран-Чако, Мату-Гросу и западной Боливии по обе стороны тропика образуется замкнутое кольцо изотермы +28 0 .

Нагревание континента и в умеренных широтах вызывает изгиб к югу в степях Аргентины и Патагонии понижении температуры до +10 на юге Огненной Земли.

Наблюдается аномальный скачок изотерм к северу и их сжимание в пучок на западном побережье.

    Климатические пояса и области.

ЭКВАТОРИАЛЬНЫЙ - постоянно жаркий и влажный климат включает западную часть Амазонской низменности с прилегающими нижними восточными склонами Анд. Большой нагрев материка в этих широтах вызывает развитие барической депрессии и внутримассовых восходящих токов воздуха, приходящие сюда атлантические массы трансформируются в экваториальные. Влага испаряется гилейными лесами и водами и возвращается обратно на землю послеполуденными конвективными дождями. Типичен равномерный ход температур и очень малые годовые и суточные амплитуды. Осадки же уменьшаются с июня по октябрь и увеличиваются количественно на горных склонах.

СУБЭКВАТОРИАЛЬНЫЙ.

а) субэкваториальный сезонно влажный климат формируется к северу и к югу от области экваториального климата и включает низменности и равнины Ориноко и Магдалены, прибрежные районы Венесуэлы, Гвианское нагорье, большую часть Бразильского нагорья, кроме востока и юга, а также восток Амазонии. Характеризуется контрастами дождливого и сухого сезонами, вызываемых сменой летних экваториальных воздушных масс зимними тропическими. При приближении к экватору длительный сухой период постепенно распадается на два коротких, перемеживающихся с долгими дождливыми.

б)резкой засугиливостью отличается север Венесуэлы и северо-восток Бразильского нагорья. Центральные части последнего имеют очень большие амплитуда суточных и особенно крайних температур. При значительной годовой сумме осадков в зимние месяцы иногда не выпадает ни капли дождя.

в) климат восточных склонов Гвианского нагорья и Гвианской низменности хотя и характеризуется субэкваториальной циркуляцией, но по количеству осадков и температурному режиму ближе экваториальному типу. Зимний дождливый сезон обусловлен там действием влажного северо-восточного пассата, весенний и летний - экваториальным муссоном, осенью же выражен засушливый период в связи с проникновением юго-восточного пассата.

ТРОПИЧЕСКИЙ ПОЯС.

а) тропический пассатный влажный климат западной периферии океанических антициклонов свойственен востоку Бразильского нагорья. Обильные осадки обусловлены как атлантическим пассатом и циклоническими дождями на полярных фронтах, так и рельефом. Для южной части нагорья характерны зимние вторжения холодных воздушных масс с юга, вызывающие падение температур с небольшими амплитудами.

б) т ропический континентальный сезонно-влажный климат области Гран-Чако. Очень сходен с климатом субэкваториальных муссонов, но отличается от него более разкими амплитудами температур. Осадки, обусловлены г.о. трансформированными экваториальными воздушными массами и влажными пассатами.

в) т ропический пассатный климат восточной периферии океанических антициклонов (климат береговых пустынь или климат «гаруа») от 4 0 30 / до 28 0 ю.ш. в Перу и в северном Чили. Резко засушливый под воздействием восточной периферии антициклона и постоянных юго-восточных пассатов. Годовая сумма осадков менее 30 мм. Малые годовые амплитуды сравнительно низких температур и большие суточные, большая относительная влажность воздуха и аномальное охлаждение береговой полосы вызывают сильную облачность в зимнюю пору.

СУБТРОПИЧЕСКИЙ ПОЯС.

а) субтропический равномерно-влажный и теплый климат распространен в Уругвае, междуречье Параны-Уругвая и восточной Пампе. Летом увлажнение происходит за счет влаги, приносимой с северо-востока массами атлантического тропического воздуха (ветры муссонного типа), в остальное время года, особенно осенью и весной за счет циклонических дождей на полярных фронтах. Лето жаркое, зима мягкая, но вторжения с юга воздуха умеренных широт могут вызвать резкое снижение температуры и даже выпадение снега.

б)субтропический континентальный засушливый климат к западу и к югу от предыдущего, т.е. в западной и юго-западной Пампе и в области Прекордильер до 41 0 ю.ш. По мере удаления от Атлантического океана и приближения к умеренным широтам количество осадков уменьшается, и они выпадают в виде летних ливней; амплитуды температур возрастают и морозы могут быть в течение пяти месяцев,

с) субтропический «средиземноморский » от 28 0 до 37 0 30 / ю.ш. с четко выраженной сезонностью, особенно в, ходе осадков. В летнее время (с ноября по март) область захватывается восточной периферией тихоокеанского антициклона и лишена осадков, зимой (май-август) включается в сферу умеренной циркуляции и орошается циклоническими дождями на полярном фронте. Перуанское течение вызывает в прибрежной полосе низкие для данной широты температуры, особенно летние и малые годовые.

УМЕРЕННЫЙ ПОЯС.

а ) умеренный сухой полупустынный климат господствует на равнинах и плато Патагонии. Характеризуется крайне малым количеством осадков, резкими амплитудами температур, очень сильными западными и южными ветрами, вызывающими зимой падение температур до -32 0 -35 0 . Барьер Анд не пропускает на восток влажные западные ветры, с Атлантики они не поступают в силу западного переноса в этих широтах, равнинный же рельеф благоприятен для вторжения холодных южных ветров. Заморозки бывают в течение шести-семи месяцев,

б) умеренный океанический прохладный и влажный климат к югу от 42 0 30 / ю.ш.. В течение всего года западные ветры умеренной циркуляции, а также с южной периферии антициклона и интенсивная циклоническая деятельность приносят в южное Чили огромное количество влаги, выпадению которой способствует подъем морских воздушных масс по западным склонам Анд. Ход температур очень ровный, амплитуды малы, но отсутствие теплого течения вызывает недостаток тепла и температуры лета для данной широты очень низки. Господствует холодная и дождливая погода с сильными западными ветрами.

В Андах. Внешние склоны Андийской системы по климатическому режиму в общем принадлежат соседним областям, но с учетом высотной поясности, здесь наблюдается понижение температур с высотой. Внутренние склоны андийских хребтов и долины характеризуются большей засушливостью и континетальностью по сравнению с внешними склонами. Гребневые полосы высоких сьерр с вечными снегами и льдами имеют высокогорный климат, сухой в центре материка и более влажный на севере и особенно на юге.

Особенности оледенения

Несмотря на наличие в Южной Америке одной из самых мощных горных систем мира со множеством вершин, превышающих 6000 м, современное оледенение на материке распространено сравнительно слабо.

Анды Колумбии, Эквадора и северного Перу лежат в экваториальных и субэкваториальны широтах, где средние месячные температуры на высоте 3000м равны +10 0 , и обильные осадки хотя и выпадают изредка в виде снега, могут поддерживать постоянный снеговой покров лишь на высотах свыше 4600-4800 м. Далее к югу - в Центральных Андах - зимние температуры снижаются, однако континетальность климата вызывает высокие летние и особенно весенние температуры. Орографическая замкнутость материка, отгороженность высокими хребтами от влияния влажного воздуха обуславливают крайнюю сухость. Подобное сочетание климатических факторов, несмотря на значительные высоты не может способствовать развитию оледенения и снеговая граница в Пуне поднимается до наивысшего положения в мире -6000-6300 м.

Благоприятные условия создаются на юге - в ЧилийскоОАргентинских Андах и особенно в Патагонских. Здесь Анды достигают больих высот, что в совокупности с усиливающимся к югу поступлением влаги в циклонах полярного фронта быстро снижают снеговую линию и порождает долинные ледники. Хребты и вершины в патагонии не превышают 3500- 4000 м, но в умеренных широтах на такой высоте отрицательные температуры наблюдаются в теение всего года. Постоянные западные ветры приносят огромное количество влаги, и горы покрываются мощным слоем снега и льда, а снеговая линия спускается до 1200-1000 м.

Следует отметить одно зональное явление, свойственное высокогорьям и на других материках в экваториальных, тропических и субтропических широтах. На фирновых полях можно наблюдать характерное явление «кающихся снегов». Под совместным абляционным действием инсоляции, ветра, дождя эрозия талых вод и некоторых других причин образуются правильные ряды, ориентированные обычно с востока на запад. Эти фирновые пирамиды вытянуты и наклонены к солнцу и имеют высоту до 5-6 м. Они напоминают коленоприклонные фигуры, отсюда и произошло это название.