Хладнокровные и теплокровные. Разница между теплокровными и холоднокровными

Теплокровные животные имеют постоянную устойчивую температуру тела, которая не зависит от температуры окружающей среды. У холоднокровных животных температура тела изменяется в зависимости от температуры окружающей среды.

Теплокровными животными являются млекопитающие и птицы. Все остальные позвоночные (земноводные, пресмыкающиеся, рыбы) и все беспозвоночные являются холоднокровными.

У холоднокровных животных медленные протекают процессы обмена веществ — в 20-30 раз медленнее, чем у теплокровных! Поэтому температура их тела выше температуры окружающей среды максимум на 1-2 градуса. Холоднокровные животные деятельны только в теплое время года. Когда температура снижается, то у холоднокровных животных снижается скорость движения (вы, наверно, замечали, «сонных» мух, пчел или бабочек осенью?) На зиму они впадают в состояние анабиоза, то есть в спячку.

Теплокровность считается более выгодным свойством организма с точки зрения эволюции, так как позволяет существовать в самых различных климатических условиях и сохранять активность и в холодное, и в жаркое время года. Обеспечивается теплокровность механизмами терморегуляции. Есть три основных пути терморегуляции:

1. Химическая терморегуляция — усиленное образование тепла в ответ на понижение температуры среды.

2. Физическая терморегуляция — изменение уровня теплоотдачи. Физическая терморегуляция обеспечивается не за счет дополнительной выработки тепла, а за счет сохранения его в теле животного, путем рефлекторного сужения и расширения кровеносных сосудов кожи (это меняет ее теплопроводность) , изменения теплоизолирующих свойств меха и перьевого покрова, регуляции испарительной теплоотдачи. Густой мех млекопитающих, перьевой покров птиц позволяют сохранять вокруг тела прослойку воздуха с температурой, близкой к температуре тела животного, и тем самым уменьшать теплоотдачу во внешнюю среду. У обитателей холодного климата хорошо развит слой подкожной жировой клетчатки, который равномерно распределен по всему телу и является хорошим теплоизолятором.

Отличным механизмом регуляции теплообмена служит также испарение воды путем потоотделения. Человек при сильной жаре может выделять более 10 л пота в день! Потоотделение способствует охлаждению тела.

3. Поведенческая терморегуляция (например, когда животное старается избегать неблагоприятных температур, перемещаясь в пространстве) .

Поддержание высокой температуры тела обеспечивается за счет того, что на холоде процессы теплопродукции в организме преобладают над процессами теплоотдачи. Но поддержание температуры за счет возрастания теплопродукции требует большого расхода энергии, поэтому животные в холодный период года нуждаются в большом количестве пищи или тратят много жировых запасов, которые они накопили летом. Поэтому, например, птицам, остающимся зимовать, страшны не столько морозы, сколько бескормица. И именно из-за недостатка еды, а не из-за холода впадают в спячку зимой некоторые теплокровные, например, медведи.

Неужели у холоднокровных нет никаких преимуществ перед теплокровными? Конечно же, есть! Ведь не случайно холоднокровные на нашей планете более многочисленны, чем теплокровные. Преимущество холоднокровных в том, что теплокровным для поддержания постоянной высокой температуры тела необходимо много энергии, то есть еды, и при ее недостатке во время похолодания они просто погибают, а холоднокровные спокойно могут пережить холодное время, залегая в спячку. Поэтому, например, практически голые холоднокровные амфибии — вездесущие животные, способные обитать во всех частях света, кроме Антарктиды!

Теплокровные животные имеют постоянную устойчивую температуру тела, которая не зависит от температуры окружающей среды. У холоднокровных животных температура тела изменяется в зависимости от температуры окружающей среды.

Теплокровными животными являются млекопитающие и птицы. Все остальные позвоночные (земноводные, пресмыкающиеся, рыбы) и все беспозвоночные являются холоднокровными.

У холоднокровных животных медленнее протекают процессы обмена веществ - в 20-30 раз медленнее, чем у теплокровных! Поэтому температура их тела выше температуры окружающей среды максимум на 1-2 градуса. Холоднокровные животные деятельны только в теплое время года. Когда температура снижается, то у холоднокровных животных снижается скорость движения (вы, наверно, замечали, "сонных" мух, пчел или бабочек осенью?) На зиму они впадают в состояние анабиоза, то есть в спячку.

Теплокровность считается более выгодным свойством организма с точки зрения эволюции, так как позволяет существовать в самых различных климатических условиях и сохранять активность и в холодное, и в жаркое время года. Обеспечивается теплокровность механизмами терморегуляции. Есть три основных пути терморегуляции:

1. Химическая терморегуляция - усиленное образование тепла в ответ на понижение температуры среды.

2. Физическая терморегуляция - изменение уровня теплоотдачи. Физическая терморегуляция обеспечивается не за счет дополнительной выработки тепла, а за счет сохранения его в теле животного, путем рефлекторного сужения и расширения кровеносных сосудов кожи (это меняет ее теплопроводность), изменения теплоизолирующих свойств меха и перьевого покрова, регуляции испарительной теплоотдачи. Густой мех млекопитающих, перьевой покров птиц позволяют сохранять вокруг тела прослойку воздуха с температурой, близкой к температуре тела животного, и тем самым уменьшать теплоотдачу во внешнюю среду. У обитателей холодного климата хорошо развит слой подкожной жировой клетчатки, который равномерно распределен по всему телу и является хорошим теплоизолятором.

Отличным механизмом регуляции теплообмена служит также испарение воды путем потоотделения. Человек при сильной жаре может выделять более 10 л пота в день! Потоотделение способствует охлаждению тела.

3. Поведенческая терморегуляция (например, когда животное старается избегать неблагоприятных температур, перемещаясь в пространстве).

Поддержание высокой температуры тела обеспечивается за счет того, что на холоде процессы теплопродукции в организме преобладают над процессами теплоотдачи. Но поддержание температуры за счет возрастания теплопродукции требует большого расхода энергии, поэтому животные в холодный период года нуждаются в большом количестве пищи или тратят много жировых запасов, которые они накопили летом. Поэтому, например, птицам, остающимся зимовать, страшны не столько морозы, сколько бескормица. И именно из-за недостатка еды, а не из-за холода впадают в спячку зимой некоторые теплокровные, например, медведи.

Неужели у холоднокровных нет никаких преимуществ перед теплокровными? Конечно же, есть! Ведь не случайно холоднокровные на нашей планете более многочисленны, чем теплокровные. Преимущество холоднокровных в том, что теплокровным для поддержания постоянной высокой температуры тела необходимо много энергии, то есть еды, и при ее недостатке во время похолодания они просто погибают, а холоднокровные спокойно могут пережить холодное время, залегая в спячку. Поэтому, например, практически голые холоднокровные амфибии - вездесущие животные, способные обитать во всех частях света, кроме Антарктиды!

Рыбы – хладнокровные позвоночные животные, преимущественно живущие в воде. Тело их состоит из: головы, туловища и хвоста, органы движения – плавники. Дышат рыбы с помощью жабр. У рыб есть всего один круг кровообращения и двухкамерное сердце. Кожа имеет много желез, выделяющих слизь. У большинства рыб тело покрыто костными чешуйками. Глаза не имеют век, ноздри не соединены с глоткой, есть только внутреннее ухо, развитая боковая линия. Почки лентовидные (туловищные). Рыбы развиваются превращением: из икры или яиц выходят личинки, которые впоследствии превращаются в молодую рыбку (малек).

Хвостовой плавник придает рыбам поступательное движение; спинные и анальный плавники придают телу устойчивость; парные (грудные и брюшные) плавники играют роль рулей при поворотах и с их помощью рыба медленно движется вперед. У скатов поступательное движение осуществляют очень большие грудные плавники.

У рыб хорошо развит спинной и головной мозг. С отделов головного мозга хорошо развиты мозжечок, отвечающий за координацию движений, продолговатый, промежуточный и средний мозг, где находятся центры, управляющие жизненно важными функциями. Передняя часть мозга в основном является обонятельным анализатором, он маленький и не имеет коры. Глаза не имеют век, рыбы видят на небольшое расстояние. Ноздри ведут в замкнутый мешок, где содержатся рецепторы обоняния. Вкусовые рецепторы расположены в ротовой полости, а также на всей поверхности тела, так же как и рецепторы прикосновения (у сомов, трески и других рыб вблизи рта есть совместный орган осязания – усики). Орган боковой линии расположен по бокам туловищных и хвостовой частей тела рыбы. Это ряд отверстий, ведущих к заполненому слизью подкожного канала с рецепторами. Этот орган воспринимает силу и направление колебания воды. Благодаря этому «шестому чувству» стая даже с миллион рыб плывет слаженно, как единое существо.
В толще черепа рыбы расположено внутреннее ухо, не соединённое с внешней средой.
По сердцу, брюшной аорте и брюшной вене проходит венозная кровь, а по спинной аорте – артериальная.
Чешуя рыб состоит из костной ткани. Жаберная дуга – это тонкая кость, на которой расположены жаберные лепестки и тычинки.Спинной мозг рыб расположен в позвоночном канале, образованном отверстиями верхних дуг позвонков.
Рыбы возникли от щитковых, перешедших к хищникам. Часть жаберных дуг превратилась в органы захвата добычи – челюсти; для увеличения маневренности плавания, необходимой при охоте, возникают парные плавники. Щитки дают начало зубам и чешуе.
Рыбы дышат жабрами. Жабры состоят из скелетных элементов – жаберных дуг, входящих в состав черепа, и мягких образований – жаберных лепестков и жаберных тычинок. Рыба заглатывает воду, которая попадает в глотку, а оттуда через жаберные щели, расположенные между жаберными дугами, – наружу. Жаберные тычинки расположены с одной стороны каждой жаберной дуги. Они мешают выходу питательных частиц из глотки вместе с водой (цедильный аппарат). С другой стороны каждой дуги лежат красные жаберные лепестки пронизаны кровеносными капиллярами, где происходит газообмен.

Источник энергии, используемый животными является главным критерием, на основе которого животных разделяют на две группы: холоднокровных (пойкилотермия или эктотермия) и (гомойотермия или эндотермия).

Холоднокровные животные не могут самостоятельно регулировать внутреннее тепло, поэтому температура их тела не постоянна и меняется в зависимости от условий . В жаркой среде, их кровь может быть гораздо теплее, чем у теплокровных животных, в том же районе. Для того, чтобы регулировать температуру, пойкилотермные животные греются на открытом солнце или охлаждаются в тени.

Примеры холоднокровных животных

Характеристика пойкилотермных животных

В теплой среде обитания, холоднокровные животные более активны и могут перемещаться относительно быстро. Это происходит потому, что термоактивируемые реакции обеспечивают энергию для работы мышц. Если тепла недостаточно, то животное становится вялым и медленным. Поэтому холоднокровные, как правило, неактивны и отдыхают, когда холодно.

Поскольку пойкилотермные животные не нуждаются в большом количестве пищи, они тратят меньше времени на ее поиск. В таких местах, как , где пищи мало, ящерицы и змеи имеют преимущество. Большинство холоднокровных животных впадают в спячку, чтобы , или имеют короткую продолжительность жизни, как и в случае многих насекомых.

Перемещаются в более глубокие и теплые воды, в то время как насекомые прячутся под землей или в обогреваемых местах, чтобы избежать зимнего холода. Некоторые виды рыб имеют специальный белок в крови со свойствами антифриза.

Во избежания длительных периодов на дневной жаре многие холоднокровные животные спят в прохладных или затененных местах. Летняя спячка или летний сон отличается от зимней спячки тем, что длится только в течение дня.

Преимущества пойкилотермии

Так как холоднокровные не генерируют свое собственное тепло, отношение массы к площади поверхности тела не столь важно, как у теплокровных животных. Таким образом, пойкилотермные животные могут быть как маленькими (насекомые, улитки, ящерицы и т.п.), так и очень большими (крокодилы). Кроме того, температура их тела не является постоянной, поэтому они меньше страдают от болезней, чем теплокровные животные.

Так как холоднокровные не нуждаются в пище, чтобы генерировать тепло, они могут выжить без кормления в течение длительного времени, именно поэтому некоторые змеи питаются только один раз в месяц. В периоды дефицита пищи, пойкилотермные животные малоактивны и преимущественно отдыхают. Большая часть пищи, которую они употребляют преобразовывается в массу тела.

Недостатки пойкилотермии

Холоднокровные животные, как правило, распространены в более теплых регионах мира. Когда температура падает, их метаболизм замедляется. Если температура остается холодной в течение длительных периодов, пойкилотермные животные могут умереть.

Начнем с самого простого – с вопроса о теплокровных и холоднокровных.

У каждого класса и каждого вида животных есть свой диапазон температур, который они постоянно должны поддерживать. Нужна ли лихорадка холоднокровным (пойкилотермным) животным? Как ни странно, но зачем‑то нужна: если болезнетворными бактериями заразить таких животных, то они усиливают двигательную активность, и температура тела повышается. Когда ящерицам, золотым рыбкам и другим холоднокровным давали аспирин, которым чаще всего сбивают температуру, то смертность увеличивалась…

Подобная картина наблюдалась и у теплокровных животных, подверженных инфекции. Так, взрослых мышей заражали вирусами герпеса или бешенства в тот период, когда искусственно повышалась температура, и мыши оказывались более устойчивыми к инфекции, чем животные с нормальной температурой. Мыши лучше сопротивлялись инфекциям даже в том случае, если температуру повышали только через сутки после заражения.

А если животные еще не могут сами регулировать температуру тела – например, новорожденные? Все равно – щенки в условиях гипертермии выживали значительно чаще, чем такие же щенки при нормальной температуре (и тех и других заражали вирусами собачьего герпеса). Правда, и этот пример – с вирусами. А как обстоят дела с бактериальными инфекциями?

И в этом случае замечено соответствие: животные выживают лучше при повышенной температуре. Такие данные получены при заражении кроликов пневмококками, стафилококками и бациллами сибирской язвы.

Однако вот какой вопрос: может быть, возбудители упомянутых инфекций просто чувствительны к температуре, которая возникает при лихорадке? Да, некоторые бактерии и вирусы действительно плохо переносят температуру 38–39 °C, а значит, защитный механизм лихорадки может объясняться – хотя бы отчасти – прямым влиянием тепла. Однако в большинстве случаев такого губительного действия выявить не удалось, и все равно при лихорадке сопротивляемость животных выше, чем при нормальной температуре. Значит, есть еще какие‑то механизмы защиты?… Есть.



Что есть лихорадка – добро или зло? Этот вопрос врачи ставили с незапамятных времен. Однако ж припарки, компрессы и грелки пришли в наши дни из глубины веков…

Строгие научные исследования начались намного позже. Основоположник современной микробиологии и иммунологии Луи Пастер попытался выяснить, отчего куры не болеют сибирской язвой. В прошлом веке уже знали, что, температура тела птиц на 6–7 °C выше, чем у млекопитающих и человека. Именно в этом Пастер и видел причину непонятного феномена. Действительно, когда Пастер, взяв тазы с холодной водой, охладил кур до температуры 38 °C, то палочки сибирской язвы за сутки сделали свое черное дело – все подопытные птицы погибли. Но если зараженную курицу доставали из воды, то она – в зависимости от срока, прошедшего после заражения, – или вовсе не заболевала, или вскоре выздоравливала.

Итак, опыт показал, что температура тела имеет значение для возникновения и развития инфекции у птиц. А у человека?

Четко и однозначно сказать, есть ли связь между сопротивляемостью к инфекции и лихорадкой, пока нельзя. Если же заглянуть в историю медицины, то можно обнаружить, что в те времена, когда не было антибиотиков, лихорадку использовали для лечения спинной сухотки и поражений сердца гонококком; публикации такого рода можно найти в медицинских изданиях конца тридцатых годов. Однако при других заболеваниях (например, при полиомиелите) лечение лихорадкой себя не оправдало.

Нормальная температура поверхности кожи тела человека – приблизительно 36.6 °C. Отклонения допустимы на 0.5 °C; эти колебания зависят от режима жизнедеятельности. Установлен любопытный факт: сон и пробуждение связаны с температурой тела. Понижение температуры служит внутренним сигналом для отхода ко сну – мы склонны засыпать при падении температурной кривой, а просыпаться, напротив, на ее подъеме. От температурного цикла зависит и продолжительность сна; очередное повышение температуры разбудит вас, даже если перед тем вы не спали очень долго.

Возможно, тем, кто страдает расстройством сна, полезно выяснить свой температурный цикл, измеряя температуру каждые 2–3 часа на протяжении нескольких дней. Так можно установить, в какое время вам легче будет заснуть…

Зададимся вопросом: отчего повышается температура тела? Ведь лихорадка сама по себе – это не заболевание, а лишь его проявление, реакция организма на болезнь или какой‑то внешний раздражитель.

Причин лихорадки несколько. В частности, на терморегулирующие центры мозга воздействуют продукты распада микробов. Разрушенные лейкоциты и обломки микроорганизмов, попадая в эти центры, повышают температуру до такого уровня, что она может губить остальных возбудителей болезни. А еще температуру повышают особые вещества – пирогены (в переводе с греческого это слово можно перевести как «рождающие горячку»).

Обычно пирогены выделяются лейкоцитами после их встречи с микробами. Впрочем, лихорадка бывает и при безмикробном воспалении – например, при кровоизлияниях в суставы и обморожениях. И в этих случаях не обходится без пирогенов.

За последние десятилетия пирогены, особенно бактериальные, привлекают все большее внимание исследователей – теоретиков, экспериментаторов и клиницистов. И не только как причина естественных и искусственных лихорадочных реакций, но и как весьма активные физиологические раздражители широкого спектра действия. Первый отечественный пирогенный препарат – пирогенал был создан еще в 1954 г. в лаборатории проф. X.X.Планельеса (Институт эпидемиологии и микробиологии им. Н.Ф.Гамалеи). Пирогенал приготовляется из микробных тел возбудителя синегнойной инфекции. Он нетоксичен для человека, и, что еще важнее, организм не реагирует на него образованием антител.

В последующем был получен препарат продигиозан, биологически еще более активный; за рубежом выпускают пирексаль – препарат из грамотрицательных бактерий. Такие бактериальные пирогены воздействуют на самые разные системы, включая энзиматические системы на уровне клетки. В современной фармакологии есть немного веществ со столь высокой активностью и таким многообразием эффектов.

И вот что существенно: наблюдать воздействие пирогенов можно при минимальных дозах этих веществ, явно недостаточных для равномерного воздействия на клетки всех систем, функции которых изменяются. Ведь для того, чтобы вызвать пирогенный эффект, достаточно ввести 0.0035 мкг вещества на 1 кг тела!

Только в последние годы стало ясно, что дело не обходится без иммунной системы. Бактериальный пироген, по‑видимому, служит только стимулом (но не обязательным участником) последующих изменений в организме.

Сейчас мы знаем, что повышенная температура каким‑то образом усиливает иммунный ответ организма, во всяком случае, некоторые его проявления, и тем самым помогает бороться с инфекцией. Особенно ясно это прослеживается в опытах in vitro. Например, белые клетки крови, которые принимают участие в фагоцитозе бактерий, при повышенной температуре становятся более подвижными и энергичнее уничтожают микроорганизмы. Недавно выяснилось, что у молекул эндогенных пирогенов – веществ, которые ответственны за повышение температуры тела, – общее происхождение с молекулами другого вещества, активатора Т‑лимфоцитов, организующих иммунную защиту от чужеродных веществ. Это второе вещество называется интерлейкином‑1; оно, как и эндогенный пироген, вырабатывается одной и той же клеткой – макрофагом. Получается такая цепочка: при контакте макрофага с возбудителем инфекции начинает вырабатываться интерлейкин‑1, активатор Т‑лимфоцитов, а дальнейшая его наработка поддерживается или даже усиливается лихорадкой, которая появляется в ответ на действие пирогенов – из тех же макрофагов.

Другой пример. При повышенной температуре усиливается образование интерферона – вещества с особыми антивирусными свойствами, которое, кстати, принимает участие в регуляции иммунных реакций. Но еще более интересно, что в присутствии интерферона и при повышенной температуре тела начинается усиленная продукция клеток, специально предназначенных для уничтожения чужеродных клеток, – так называемых цитотоксических лимфоцитов. Это наблюдение заставляет по‑новому взглянуть на не распознанную ранее роль лихорадки в развитии защитной реакции. Исследователи полагают, что лихорадка стимулирует в первую очередь выработку Т‑лимфоцитов, в то время как В‑лимфоциты, ответственные за синтез антител, вероятно, мало зависят от повышения температуры. Однако В‑лимфоциты получают сигнал к действию от особой разновидности Т‑лимфоцитов – от Т‑хелперов, а те в условиях лихорадки проявляют повышенную активность.

Что и говорить, хитра на выдумки природа; или, если процитировать Козьму Пруткова, – «от малых причин бывают весьма важные последствия»…

Согласно математической модели инфекции и иммунитета, разработанной академиком Г.И.Марчуком, вирусы, проникшие в организм, встречаются с лимфоцитами, стимулируют их размножение и образование плазматических клеток. Повышенная температура ускоряет миграцию лимфоцитов и вирусов, они чаще сталкиваются друг с другом и образуют комплексы «вирус‑лимфоцит». Температура тела зависит от концентрации этих комплексов в организме: если она ниже некоторого порога, температура не повышается, если же выше – температура растет.

Но если так, то искусственное снижение температуры с помощью таблеток может спровоцировать затяжные или хронические болезни. Вероятно, лучше опираться на естественную защитную реакцию организма. Для лечения затяжных форм предложен и обоснован даже такой парадоксальный метод – перевод болезни из хронической формы в острую.

Лечение температурой.

Если горячка может оказаться полезной организму, стимулируя иммунные реакции и, направляя иммунный ответ на верный путь, то почему бы не лечить больных повышенной температурой? Скажем, просто согревая извне…

Не будем путать принципиально разные вещи: лихорадку, вызванную пирогенами, и согревание поданной извне тепловой энергией. В последнем случае организм экономит энергию, непроизводительно затрачиваемую на процедуру «саморазогревания». Например, при температуре тела 41 °C производительность сердца возрастает в 5–6 раз, и оно перекачивает 20–30 л крови в минуту. Такая нагрузка на организм чрезмерна; поэтому сейчас для лечения некоторых заболеваний все чаще используют гипертермию – согревание тела больного внешними источниками тепла. Обычно это лечение горячей водой в специальных ваннах и камерах; впрочем, иногда применяют местную гипертермию, повышая температуру того или иного участка тела.

Было время, когда высокая температура считалась безусловно вредной для человека и с ней активно боролись жаропонижающими средствами. И сейчас еще в медицинских справочниках можно найти раздел, где описаны подробно жаропонижающие лекарства – аспирин, антипирин, амидопирин, аскофен, асфен, пирафен, пиранал, фенацетин и т. п. Теперь, когда лихорадка усиленно изучается как биологическое явление, можно считать доказанным, что повышение температуры во многих случаях оказывает благоприятное действие на организм: при лихорадке интенсифицируется обмен веществ, происходят сдвиги в деятельности центральной нервной системы, сердца и легких, что стимулирует защитные силы. Ясно, что лихорадка активирует и главную защитную силу – иммунную систему. Но…

Лихорадка может оказывать и повреждающее действие. При некоторых вирусных инфекциях вирус сам по себе не настолько «силен», чтобы мешать нормальному течению жизни. Однако организм так бурно реагирует на него, что повреждаются Т‑лимфоциты. И по каким‑то причинам, пока не ясным, нарушается баланс между защитным и повреждающим действием лихорадки. Значит, надо, по меньшей мере, проявлять осторожность…

Что же делать при лихорадке? И действительно, что же делать, когда, достав градусник из‑под мышки, мы обнаружили, что ртутный столбик поднялся выше ожидаемого? Может быть, быстро сбить температуру каким‑либо препаратом, благо сейчас они легко доступны каждому и продаются без рецепта? Или лучше подождать? А ждать как раз и некогда, дело не терпит отлагательств. И мы, конечно, пытаемся сбить температуру. И сами же мешаем собственному организму бороться с инфекционным агентом.

Но это полбеды. Хуже, когда мы начинаем глотать первый попавшийся под руку антибиотик или сульфаниламид, который убивает не только болезнетворный микроб (а чаще вовсе не убивает), но и все другие микроорганизмы, которые нужны для нашего организма.

Бесконтрольное употребление жаропонижающих таблеток с точки зрения иммунологии совершенно не оправданно. Они снижают сопротивляемость организма, и тогда возникают благоприятные условия для болезнетворных бактерий и вирусов. Лучше не спешить с таблетками. Высокая температура свидетельствует не только о том, что организм вступил в борьбу с возбудителем заболевания, но и о том, что одним из орудий ближнего боя он избрал температуру.

А чего не надо делать – так это бояться горячки. Она не враг, а союзник в борьбе с инфекционным врагом. Температура, конечно, – не самая главная защитная сила организма. Но когда человек простужен и хочет как можно скорее встать на ноги, то вряд ли надо пренебрегать и второстепенным. При обычной простуде попробуем обойтись без жаропонижающих средств. Во всяком случае, если врач не будет настаивать.