Геномный код. Понятие о гене, генетическом коде

Под генетическим кодом принято понимать такую систему знаков, обозначающих последовательное расположение соединений нуклеотидов в ДНКа и РНКа, которая соответствует другой знаковой системе, отображающей последовательность аминокислотных соединений в молекуле белка.

Это важно!

Когда учёным удалось изучить свойства генетического кода, одним из главных была признана универсальность. Да, как ни странно это звучит, все объединяет один, универсальный, общий генетический код. Формировался он на протяжении большого временного промежутка, и процесс закончился около 3,5 миллиардов лет назад. Следовательно, в структуре кода можно проследить следы его эволюции, от момента зарождения до сегодняшнего дня.

Когда говорится о последовательности расположения элементов в генетическом коде, имеется в виду, что она далеко не хаотична, а имеет строго определённый порядок. И это тоже во многом определяет свойства генетического кода. Это равнозначно расположению букв и слогов в словах. Стоит нарушить привычный порядок, и большинство того, что мы будем читать на книжных или газетных страницах, превратится в нелепую абракадабру.

Основные свойства генетического кода

Обычно код несёт в себе какую-либо информацию, зашифрованную особым образом. Для того чтобы расшифровать кода, необходимо знать отличительные особенности.

Итак, основные свойства генетического кода - это:

  • триплетность;
  • вырожденность или избыточность;
  • однозначность;
  • непрерывность;
  • уже указанная выше универсальность.

Остановимся подробнее на каждом свойстве.

1. Триплетность

Это когда три соединения нуклеотидов образуют последовательную цепочку внутри молекулы (т.е. ДНК или же РНК). В результате создаётся соединение триплета или кодирует одну из аминокислот, место её нахождения в цепи пептидов.

Различают кодоны (они же кодовые слова!) по их последовательности соединения и по типу тех азотистых соединений (нуклеотидов), которые входят в их состав.

В генетике принято выделять 64 кодоновых типа. Они могут образовывать комбинации из четырёх типов нуклеотидов по 3 в каждом. Это равносильно возведению числа 4 в третью степень. Таким образом, возможно образование 64-х нуклеотидных комбинаций.

2. Избыточность генетического кода

Это свойство прослеживается тогда, когда для шифрования одной аминокислоты требуется несколько кодонов, обычно в пределах 2-6. И только и триптофана можно кодировать с помощью одного триплета.

3. Однозначность

Она входит в свойства генетического кода как показатель здоровой генной наследственности. Например, о хорошем состоянии крови, о нормальном гемоглобине может рассказать медикам стоящий на шестом месте в цепочке триплет ГАА. Именно он несёт информацию о гемоглобине, и им же кодируется А если человек болен анемией, один из нуклеотидов заменяется на другую букву кода - У, что и является сигналом заболевания.

4. Непрерывность

При записи этого свойства генетического кода следует помнить, что кодоны, как звенья цепочки, располагаются не на расстоянии, а в прямой близости, друг за другом в нуклеиновой кислотной цепи, и цепь эта не прерывается - в ней нет начала или конца.

5. Универсальность

Никогда не следует забывать, что всё сущее на Земле объединено общим генетическим кодом. И потому у примата и человека, у насекомого и птицы, столетнего баобаба и едва проклюнувшейся из-под земли травинки одинаковыми триплетами кодируются схожие аминокислоты.

Именно в генах заложена основная информация о свойствах того или иного организма, своего рода программа, которую организм получает в наследство от живших ранее и которая существует как генетический код.

Генетический код - это особенная шифровка наследственной информации с помощью молекул Основываясь на этой гены соответствующе управляют синтезом белков и ферментов в организме, определяя тем самым обмен веществ. В свою очередь, строение отдельных белков и их функции обуславливается расположением и составом аминокислот - структурных единиц молекулы белка.

В середине прошлого века были выявлены гены, которые являются отдельными участками (сокращенно - ДНК). Звенья нуклеотидов образуют в характерную двойную цепь, собранную в форме спирали.

Ученые нашли связь между генами и химической структурой отдельных белков, сущность которой состоит в том, что структурный порядок расположения аминокислот в молекулах белка полностью соответствует порядку нуклеотидов в гене. Установив эту связь, ученые решили расшифровать генетический код, т.е. установить законы соответствия структурных порядков нуклеотидов в ДНК и аминокислот в белках.

Существует всего четыре типа нуклеотидов:

1) А - адениловые;

2) Г - гуаниловые;

3) Т - тимидиловые;

4) Ц - цитидиловые.

В состав белков входит двадцать видов основных аминокислот. С расшифровкой генетического кода возникли трудности, поскольку нуклеотидов гораздо меньше, чем аминоскислот. При решении этой проблемы было высказано предположение, что аминокислоты кодируются различными сочетаниями из трех нуклеотидов (так называемым кодоном или триплетом).

Кроме того, необходимо было объяснить, как именно располагаются триплеты вдоль гена. Так возникли три основные группы теорий:

1) триплеты следуют друг за другом непрерывно, т.е. формируют сплошной код;

2) триплеты располагаются с чередованием «бессмысленных» участков, т.е. формируются так называемые «запятые» и «абзацы» в коде;

3) триплеты могут перекрываться, т.е. конец первого триплета может формировать начало следующего.

В настоящее время в основном используют теорию о непрерывности кода.

Генетический код и его свойства

1) Код триплетен - он состоит из произвольных сочетаний трех нуклеотидов, которые образуют кодоны.

2) Генетический код избыточен - его триплетности. Одна аминокислота может быть закодирована несколькими кодонами, поскольку кодонов, по математическим подсчетам, в три раза больше, чем аминокислот. Некоторые кодоны выполняют определенные терминирующие функции: одни могут быть «стоп-сигналами», которые программируют окончание производства аминокислотной цепи, а другие могут обозначать инициирование считывания кода.

3) Генетический код однозначен - каждому из кодонов может соответствовать только одна аминокислота.

4) Генетический код обладает коллинеарностью, т.е. последовательность нуклеотидов и последовательность аминокислот четко соответствуют друг другу.

5) Код записан непрерывно и компактно, «бессмысленные» нуклеотиды в нем отсутствуют. Он начинается определенным триплетом, который сменяется следующим без перерыва и заканчивается терминирующим кодоном.

6) Генетический код обладает универсальностью - гены любого организма кодируют информацию о белках абсолютно одинаково. Это не зависит от уровня сложности организации организма или его системного положения.

Современная наука предполагает, что генетический код возникает непосредственно при зарождении нового организма из костной материи. Случайные изменения и процессы эволюции делают возможными любые варианты кода, т.е. аминокислоты могут переставляться в любой последовательности. Почему в ходе эволюции выжил именно такой вид кода, почему код универсален и имеет подобную структуру? Чем больше наука узнает о феномене генетического кода, тем больше возникает новых загадок.

Генетические функции ДНК заключаются в том, что она обеспечивает хранение, передачу и реализацию наследственной информации, которая представляет собой информацию о первичной структуре белков (т.е. их аминокислотном составе). Связь ДНК с синтезом белка была предсказана биохимиками Дж. Бидлом и Э. Тейтумом еще в 1944 г. при изучении механизма мутаций у плесневого грибка Neurospora. Информация записана в виде определенной последовательности азотистых оснований в молекуле ДНК с помощью генетического кода. Расшифровку генетического кода считают одним из великих открытий естествознания ХХ в. и по значимости приравнивают к открытию ядерной энергии в физике. Успех в этой области связан с именем американского ученого М. Ниренберга, в лаборатории которого был расшифрован первый кодон — YYY. Однако весь процесс расшифровки занял более 10 лет, в нем участвовало много известных ученых из разных стран, и не только биологи, но и физики, математики, кибернетики. Решающий вклад в разработку механизма записи генетической информации был внесен Г. Гамовым, который первым предположил, что кодон состоит из трех нуклеотидов. Совместными усилиями ученых была дана полная характеристика генетического кода.

Буквы во внутреннем круге — основания в 1-й позиции в кодоне, буквы во втором круге —
основания во 2-й позиции и буквы снаружи второго круга — основания в 3-й позиции.
В последнем круге — сокращенные названия аминокислот. НП — неполярные,
П — полярные аминокислотные остатки.

Основными свойствами генетического кода являются: триплетность , вырожденность и неперекрываемость . Триплетность означает, что последовательность из трех оснований определяет включение в молекулу белка специфической аминокислоты (например, АУГ — метионин). Вырожденность кода заключается в том, что одна и та же аминокислота может кодироваться двумя или несколькими кодонами. Неперекрываемость означает, что одно и то же основание не может входить в состав двух соседних кодонов.

Установлено, что код является универсальным , т.е. принцип записи генетической информации одинаков у всех организмов.

Триплеты, кодирующие одну и ту же аминокислоту, называются кодонами-синонимами. Обычно они имеют одинаковые основания в 1-й и 2-й позициях и различаются только по третьему основанию. Например, включение аминокислоты аланина в молекулу белка кодируют кодоны-синонимы в молекуле РНК — GCA, GCC, GCG, GCY. В составе генетического кода имеются три некодирующих триплета (нонсенс-кодоны — UAG, UGA, UAA), которые играют роль stop-сигналов в процессе считывания информации.

Установлено, что универсальность генетического кода не является абсолютной. При сохранении общего для всех организмов принципа кодирования и особенностей кода в ряде случаев наблюдается изменение смысловой нагрузки отдельных кодовых слов. Это явление получило название неоднозначности генетического кода, а сам код был назван квазиуниверсальным .

Читайте также другие статьи темы 6 "Молекулярные основы наследственности" :

Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы" .

Благодаря процессу транскрипции в клетке осуществляется передача информации от ДНК к белку: ДНК - и-РНК - белок. Генетическая информация, содержащаяся в ДНК и в и-РНК, заключена в последовательности расположения нуклеотидов в молекулах. Каким же образом происходит перевод информации с "языка" нуклеотидов на "язык" аминокислот? Такой перевод осуществляется с помощью генетического кода. Код, или шифр,- это система символов для перевода одной формы информации в другую. Генетический код - это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в информационной РНК. Насколько важна именно последовательность расположения одних и тех же элементов (четырех нуклеотидов в РНК) для понимания и сохранения смысла информации, можно убедиться на простом примере: переставив буквы в слове код, мы получим слово с иным значением - док. Какими же свойствами обладает генетический код?

1. Код триплетен. В состав РНК входят 4 нуклеотида: А, Г, Ц, У. Если бы мы пытались обозначить одну аминокислоту одним нуклеотидом, то 16 из 20 аминокислот остались бы не зашифрованы. Двухбуквенный код позволил бы зашифровать 16 аминокислот (из четырех нуклеотидов можно составить 16 различных комбинаций, в каждой из которых имеется два нуклеотида). Природа создала трехбуквенный, или триплетный, код. Это означает, что каждая из 20 аминокислот зашифрована последовательностью трех нуклеотидов, называемых триплетом или кодоном. Из 4 нуклеотидов можно создать 64 различные комбинации по 3 нуклеотида в каждой (4*4*4=64). Этого с избытком хватает для кодирования 20 аминокислот и, казалось бы, 44 кодона являются лишними. Однако это не так.

2. Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (от двух до шести). Исключение составляют аминокислоты метионин и триптофан, каждая из которых кодируется только одним триплетом. (Это видно из таблицы генетического кода .) Тот факт, что метионин кодируется одним триплетом АУТ, имеет особый смысл, который вам станет понятен позже ( 16).

3. Код однозначен. Каждый кодон шифрует только одну аминокислоту. У всех здоровых людей в гене, несущем информацию о бета-цепи гемоглобина , триплет ГАА или ГАГ, I стоящий на шестом месте, кодирует глутаминовую кислоту. У больных серповидноклеточной анемией второй нуклеотид в этом триплете заменен на У. Как видно из таблицы, триплеты ГУА или ГУГ, которые в этом случае образуются, кодируют аминокислоту валин. К чему приводит такая замена, вы уже знаете из раздела о ДНК .

4. Между генами имеются "знаки препинания". В печатном тексте в конце каждой фразы стоит точка. Несколько связанных по смыслу фраз составляют абзац. На языке генетической информации таким абзацем являются оперон и комплементарная ему и-РНК. Каждый ген в опероне кодирует одну полипептидную цепочку - фразу. Так как в ряде случаев по матрице и-РНК последовательно создается несколько разных полипептидных цепей, они должны быть отделены друг от друга. Для этого в генетическом коде существуют три специальные триплета - УАА, УАГ, УГА, каждый из которых обозначает прекрдщение синтеза одной полипептидной цепи. Таким образом, эти триплеты выполняют функцию знаков препинания. Они находятся в конце каждого гена. Внутри гена нет "знаков препинания". Поскольку генетический код подобен языку, разберем это свойство на примере такой составленной из триплетов фразы: жил был кот тих был сер мил мне тот кот. Смысл написанного понятен, несмотря на отсутствие "знаков препинания. Если же мы уберем в первом слове одну букву (один нуклеотид в гене), но читать будем также тройками букв, то получится бессмыслица: илб ылк отт ихб ылс ерм илм нет отк от Нарушение смысла возникает и при выпадении одного или двух нуклеотидов из гена. Белок, который будет считываться с такого испорченного гена, не будет иметь ничего общего с тем белком, который кодировался нормальным геном.

6. Код универсален. Генетический код един для всех живущих на Земле существ. У бактерий и грибов, пшеницы и хлопка, рыб и червей, лягушки и человека одни и те же триплеты кодируют одни и те же аминокислоты.

Генетический код разных организмов обладает некоторыми общими свойствами:
1) Триплетность. Для записи любой, в том числе и наследственной информации используется определенный шифр, элементом которого является буква, или символ. Совокупность таких символов составляет алфавит. Отдельные сообщения записываются комбинацией символов, которые называются кодовыми группами, или кодонами. Известен алфавит, состоящий всего из двух символов, - это азбука Морзе. В ДНК 4 буквы – первые буквы названий азотистых оснований (А, Г, Т, Ц), значит, генетический алфавит состоит всего из 4 символов. Что же является кодовой группой, или, словом генетического кода? Известно 20 основных аминокислот, содержание которых должно быть записано генетическим кодом, т. е. 4 буквы должны дать 20 кодовых слов. Допустим, слово состоит из одного символа, тогда мы получим только 4 кодовые группы. Если же слово состоит из двух символов, то таких групп будет только 16, а этого явно мало, чтобы закодировать 20 аминокислот. Следовательно, в кодовом слове должно быть минимум 3 нуклеотида, что даст 64 (43) сочетания. Такого количества триплетных сочетаний вполне достаточно для кодирования всех аминокислот. Таким образом, кодон генетического кода – это триплет нуклеотидов.
2) Вырожденность (избыточность) – свойство генетического кода состоящее с одной стороны, в том, что он содержит избыточные триплеты, т. е. синонимы, а с другой – «бессмысленные» триплеты. Поскольку код включает 64 сочетания, а кодируются только 20 аминокислот, то некоторые аминокислоты кодируются несколькими триплетами (аргинин, серин, лейцин – шестью; валин, пролин, аланин, глицин, треонин – четырьмя; изолейцин – тремя; фенилаланин, тирозин, гистидин, лизин, аспарагин, глутамин, цистеин, аспарагиновая и глутаминовая кислоты – двумя; метионин и триптофан – одним триплетом). Некоторые кодовые группы (УАА, УАГ, УГА) вообще не несут смысловой нагрузки, т. е. являются «бессмысленными» триплетами. «Бессмысленные», или nonsense, кодоны выполняют функцию терминаторов цепей – знаков препинания в генетическом тексте – служат сигналом окончания синтеза белковой цепи. Такая избыточность кода имеет большое значение для повышения надежности передачи генетической информации.
3) Неперекрываемость. Кодовые триплеты никогда не перекрываются, т. е. всегда транслируются вместе. При считывании информации с молекулы ДНК невозможно использование азотистого основания одного триплета в комбинации с основаниями другого триплета.
4) Однозначность. Нет случаев, когда один и тот же триплет соответствовал бы более чем одной кислоте.
5) Отсутствие разделительных знаков внутри гена. Генетический код считывается с определенного места без запятых.
6) Универсальность. У различных видов живых организмов (вирусов, бактерий, растений, грибов и животных) одинаковые триплеты кодируют одни и те же аминокислоты.
7) Видовая специфичность. Количество и последовательность азотистых оснований в цепи ДНК у разных организмов различные.